28 research outputs found

    Ocular anterior segment pathologies and tear film changes in patients with psoriasis vulgaris.

    Get PDF
    Ocular manifestations in patients with psoriasis vulgaris have been investigated in only a small number of studies. Our purpose was to identify tear film function and ocular pathologies associated with psoriasis vulgaris in patients who had received neither oral retinoids nor phototherapy. We examined 62 eyes of 31 patients with psoriasis and 60 eyes of 30 age-and-sex matched healthy volunteers. In addition to complete ocular and dermatological examination, tear film function (i.e., tear secretion and tear film stability) were assessed by the Schirmer-I test, as well as by tear film break-up time. None of the controls had any ocular abnormalities, whereas 67.74% of patients with psoriasis had various anterior segment pathologies (P&#60;0.00009). The most prevalent finding was chronic blepharoconjunctivitis (64.5%), as the only pathology (n=9) or in association with other findings, including nonspecific corneal opacities (n=4), cataract (n=3), both corneal opacities and cataract (n=2), and corneal pigment dispersion (n=2). The Schirmer-I test results revealed comparable mean values in the patient group (9.8+-4.2 mm) and in the controls (11.2+-3.7 mm; P=0.078). However, mean tear film break-up time was significantly shorter in the patients (7.2+-2.5 sec) than in the healthy persons (11.7+-3.1 sec; P=0.001). In agreement with some previous reports, our findings clearly demonstrated that early ocular involvement occurs in patients with psoriasis vulgaris, irrespective of the history of previous therapeutic modalities (e.g., retinoid therapy and phototherapy). Thus, the present findings are suggestive of the contributory role of primary etiologic factors of psoriasis in the pathogenesis of ocular changes in patients with psoriasis vulgaris.</p

    Alloyed Heterostructures of CdSexS1-x Nanoplatelets with Highly Tunable Optical Gain Performance

    Get PDF
    Here, we designed and synthesized alloyed heterostructures of CdSexS1-x nanoplatelets (NPLs) using CdS coating in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSexS1-x core NPLs as a seed, we prepared CdSexS1-x/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSexS1-x cores) we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together-with increased absorption cross-section and improved stability without changing the emission Spectrum of CdSexS1-x, alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSexS1-x/CdS core/shell NPLs. Depending on the sulfur composition of the CdSexS1-x, core and thickness of the CdS shell, CdSexS1-x/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560-650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSexS1-x, alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSexS1-x based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to similar to 53 mu J/cm(2)

    Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain

    Get PDF
    Solution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe1-xTex/CdS core/multicrown hetero-nanoplatelets (NPLs), controlling the amount of Te up to 50% in the crown without changing their thicknesses, which significantly increases their colloidal and photostability under ambient conditions and at the same time preserving their attractive optical properties. Confirming the final lateral growth of CdS sidewalls with X-ray photoelectron spectroscopy, energy-dispersive analysis, and photoelectron excitation spectroscopy, we found that the successful coating of this CdS crown around the periphery of conventional type-II NPLs prevents the unwanted formation of needle-like stacks, which results in reduction of the undesired scattering losses in thin-film samples of these NPLs. Owing to highly efficient exciton funneling from the outmost CdS crown accompanied by the reduced scattering and very low waveguide loss coefficient (similar to 18 cm(-1)), ultralow optical gain thresholds of multicrown type-II NPLs were achieved to be as low as 4.15 mu J/cm(2) and 2.48 mJ/cm(2) under one- and two-photon absorption pumping, respectively. These findings indicate that the strategy of using engineered advanced heterostructures of nanoplatelets provides solutions for improved colloidal stability and enables enhanced photonic performance

    CdSe/CdSe1-xTex Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness

    Get PDF
    Here we designed and synthesized CdSe/CdSe1-xTex core/crown nanoplatelets (NPLs) with controlled crown compositions by using the core-seeded-growth approach. We confirmed the uniform growth of the crown regions with well-defined shape and compositions by employing transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. By precisely tuning the composition of the CdSe1-xTex crown region from pure CdTe (x = 1.00) to almost pure CdSe doped with several Te atoms (x = 0.02), we achieved tunable excitonic properties without changing the thickness of the NPLs and demonstrated the evolution of type-II electronic structure. Upon increasing the Te concentration in the crown region, we obtained continuously tunable photoluminescence peaks within the range of similar to 570 nm (for CdSe1-xTex crown with x = 0.02) and similar to 660 nm (for CdSe1-xTex crown with x = 1.00). Furthermore, with the formation of the CdSe1-xTex crown region, we observed substantially improved photoluminescence quantum yields (up to similar to 95%) owing to the suppression of nonradiative hole trap sites. Also, we found significantly increased fluorescence lifetimes from similar to 49 up to similar to 326 ns with increasing Te content in the crown, suggesting the transition from quasi-type-II to type-II electronic structure. With their tunable excitonic properties, this novel material presented here will find ubiquitous use in various efficient light-emitting and-harvesting applications

    Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth

    Get PDF
    Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c-ALD) provides the ability to produce their core/shell heterostructures. However, as c-ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near-unity efficiency CdSe/ZnS NPLs are shown using hot-injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI-shell hetero-NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c-ALD shell-coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI-shell NPLs exhibit ultralow gain thresholds reaching approximate to 7 mu J cm(-2). Despite being annealed at 500 K, these ZnS-HI-shell NPLs possess low gain thresholds as small as 25 mu J cm(-2). These findings indicate that the proposed 573 K HI-shell-grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics

    Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions

    Get PDF
    Unique electronic and optical properties of doped semiconductor nanocrystals (NCs) have widely stimulated a great deal of interest to explore new effective synthesis routes to achieve controlled doping for highly efficient materials. In this work, we show copper doping via postsynthesis partial cation exchange (CE) in atomically flat colloidal semiconductor nanoplatelets (NPLs). Here chemical reactivity of different dopant precursors, reaction kinetics, and shape of seed NPLs were extensively elaborated for successful doping and efficient emission. Dopant-induced Stokes shifted and tunable photoluminescence emission (640 to 830 nm) was observed in these Cu-doped CdSe NPLs using different thicknesses and heterostructures. High quantum yields (reaching 63%) accompanied by high absorption cross sections (>2.5 times) were obtained in such NPLs compared to those of Cu-doped CdSe colloidal quantum dots (CQDs). Systematic tuning of the doping level in these two-dimensional NPLs provides an insightful understanding of the chemical dopant based orbital hybridization in NCs. The unique combination of doping via the partial CE method and precise control of quantum confinement in such atomically flat NPLs originating from their magic-sized vertical thickness exhibits an excellent model platform for studying photophysics of doped quantum confined systems

    Simple and Complex Metafluids and Metastructures with Sharp Spectral Features in a Broad Extinction Spectrum: Particle-Particle Interactions and Testing the Limits of the Beer-Lambert Law

    Full text link
    Metallic nanocrystals (NCs) are useful instruments for light manipulation around the visible spectrum. As their plasmonic resonances depend heavily on the NC geometry, modern fabrication techniques afford a great degree of control over their optical responses. We take advantage of this fact to create optical filters in the visible-near IR. Our systems show an extinction spectrum that covers a wide range of wavelengths (UV to mid-IR), while featuring a narrow transparency band around a wavelength of choice. We achieve this by carefully selecting the geometries of a collection of NCs with narrow resonances that cover densely the spectrum from UV to mid-IR except for the frequencies targeted for transmission. This fundamental design can be executed in different kinds of systems, including a solution of colloidal metal NCs (metafluids), a structured planar metasurface or a combination of both. Along with the theory, we report experimental results, showing metasurface realizations of the system, and we discuss the strengths and weaknesses of these different approaches, paying particular attention to particle-particle interaction and to what extent it hinders the intended objective by shifting and modifying the profile of the planned resonances through the hybridization of their plasmonic modes. We have found that the Beer-Lambert law is very robust overall and is violated only upon aggregation or in configurations with nearly-touching NCs. This striking property favors the creation of metafluids with a narrow transparency window, which are investigated here.Comment: Includes Supplementary Information, totaling 32 pages and 8 figure

    Effectiveness of probiotics in the prevention of carious lesions during treatment with fixed orthodontic appliances.

    Full text link
    corecore