35 research outputs found

    On Topological Minors in Random Simplicial Complexes

    Full text link
    For random graphs, the containment problem considers the probability that a binomial random graph G(n,p)G(n,p) contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well-known that the (sharp) threshold is at p=1/np=1/n. We consider a natural analogue of this question for higher-dimensional random complexes Xk(n,p)X^k(n,p), first studied by Cohen, Costa, Farber and Kappeler for k=2k=2. Improving previous results, we show that p=Θ(1/n)p=\Theta(1/\sqrt{n}) is the (coarse) threshold for containing a subdivision of any fixed complete 22-complex. For higher dimensions k>2k>2, we get that p=O(n1/k)p=O(n^{-1/k}) is an upper bound for the threshold probability of containing a subdivision of a fixed kk-dimensional complex.Comment: 15 page

    Higher Dimensional Discrete Cheeger Inequalities

    Full text link
    For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that λ(G)h(G)\lambda(G) \leq h(G), where λ(G)\lambda(G) is the second smallest eigenvalue of the Laplacian of a graph GG and h(G)h(G) is the Cheeger constant measuring the edge expansion of GG. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs). Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on Z2\mathbb{Z}_2-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by h(X)h(X), was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed λ(X)h(X)\lambda(X) \leq h(X), where λ(X)\lambda(X) is the smallest non-trivial eigenvalue of the ((k1)(k-1)-dimensional upper) Laplacian, for the case of kk-dimensional simplicial complexes XX with complete (k1)(k-1)-skeleton. Whether this inequality also holds for kk-dimensional complexes with non-complete (k1)(k-1)-skeleton has been an open question. We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed, and each allows for a different kind of additional strengthening of the original result.Comment: 14 pages, 2 figure

    Not All Saturated 3-Forests Are Tight

    Full text link
    A basic statement in graph theory is that every inclusion-maximal forest is connected, i.e. a tree. Using a definiton for higher dimensional forests by Graham and Lovasz and the connectivity-related notion of tightness for hypergraphs introduced by Arocha, Bracho and Neumann-Lara in, we provide an example of a saturated, i.e. inclusion-maximal 3-forest that is not tight. This resolves an open problem posed by Strausz

    Trendreport ambulante soziale Unterstützungsdienstleistungen im Alter - arbeitswissenschaftliche Perspektiven

    Full text link
    Der ‚Trendreport ambulante soziale Unterstützungsdienstleistungen im Alter‘ bezieht sich auf ein Feld, das im Kern durch die Altenpflege und darüber hinaus bzw. darum herum durch mannigfaltige weitere Unterstützungsangebote gekennzeichnet ist. Der Trendreport wird der Frage nachgehen, welches Produktivitätsverständnis diesem Feld personaler Unterstützungstätigkeiten angesichts seiner dynamischen Entwicklung in den vergangenen zwei Dekaden angemessen ist. Unsere These lautet, dass hier allein ein erweitertes Produktivitätsverständnis passend ist, das neben der Kosteneffizienz auch die Unterstützungsqualität sowie die Arbeitsqualität mit einbezieht.17

    On Eigenvalues of Random Complexes

    Full text link
    We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial-Meshulam model Xk(n,p)X^k(n,p) of random kk-dimensional simplicial complexes on nn vertices. We show that for p=Ω(logn/n)p=\Omega(\log n/n), the eigenvalues of these matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of (k2)(k-2)-dimensional faces. Garland's result concerns the Laplacian; we develop an analogous result for the adjacency matrix. The same arguments apply to other models of random complexes which allow for dependencies between the choices of kk-dimensional simplices. In the second part of the paper, we apply this to the question of possible higher-dimensional analogues of the discrete Cheeger inequality, which in the classical case of graphs relates the eigenvalues of a graph and its edge expansion. It is very natural to ask whether this generalizes to higher dimensions and, in particular, whether the higher-dimensional Laplacian spectra capture the notion of coboundary expansion - a generalization of edge expansion that arose in recent work of Linial and Meshulam and of Gromov. We show that this most straightforward version of a higher-dimensional discrete Cheeger inequality fails, in quite a strong way: For every k2k\geq 2 and nNn\in \mathbb{N}, there is a kk-dimensional complex YnkY^k_n on nn vertices that has strong spectral expansion properties (all nontrivial eigenvalues of the normalised kk-dimensional Laplacian lie in the interval [1O(1/n),1+O(1/n)][1-O(1/\sqrt{n}),1+O(1/\sqrt{n})]) but whose coboundary expansion is bounded from above by O(logn/n)O(\log n/n) and so tends to zero as nn\rightarrow \infty; moreover, YnkY^k_n can be taken to have vanishing integer homology in dimension less than kk.Comment: Extended full version of an extended abstract that appeared at SoCG 2012, to appear in Israel Journal of Mathematic
    corecore