2,442 research outputs found

    A rapidly converging triangular plate element

    Get PDF
    Shear stress analysis of triangular plate element

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly

    Boson Stars in General Scalar-Tensor Gravitation: Equilibrium Configurations

    Get PDF
    We study equilibrium configurations of boson stars in the framework of general scalar-tensor theories of gravitation. We analyse several possible couplings, with acceptable weak field limit and, when known, nucleosynthesis bounds, in order to work in the cosmologically more realistic cases of this kind of theories. We found that for general scalar-tensor gravitation, the range of masses boson stars might have is comparable with the general relativistic case. We also analyse the possible formation of boson stars along different eras of cosmic evolution, allowing for the effective gravitational constant far out form the star to deviate from its current value. In these cases, we found that the boson stars masses are sensitive to this kind of variations, within a typical few percent. We also study cases in which the coupling is implicitly defined, through the dependence on the radial coordinate, allowing it to have significant variations in the radius of the structure.Comment: 19 pages in latex, 3 figures -postscript- may be sent via e-mail upon reques

    Cognitive heuristics in borderline personality disorder across treatment: A longitudinal non-parametric analysis.

    Get PDF
    The development of a constructive therapeutic alliance may represent an important feature of interpersonal adaptation in clients with Borderline Personality Disorder (BPD). The present study explores cognitive heuristics as dynamic features of change in relationship with the therapeutic alliance in the treatment of BPD. In total, N = 60 clients with BPD, are included in the present study. In the context of brief therapy, the therapeutic alliance (WAI) is assessed from the client and the therapist perspectives after each therapy session; cognitive heuristics are assessed three times (CERS). The data analyses are on the basis of non-parametric clusters (kml3d) linked with the therapeutic alliance. The results showed that clusters of cognitive heuristics trajectories are linked with the client's therapeutic alliance (t(55) = 2.30, p = .03), but they remained unrelated with the evolution of the therapist's alliance. These results are discussed with regard to the interpersonal adaptiveness of cognitive heuristics in the context of BPD undergoing treatment

    Dynamical evolution of boson stars in Brans-Dicke theory

    Get PDF
    We study the dynamics of a self-gravitating scalar field solitonic object (boson star) in the Jordan-Brans-Dicke (BD) theory of gravity. We show dynamical processes of this system such as (i) black hole formation of perturbed equilibrium configuration on an unstable branch; (ii) migration of perturbed equilibrium configuration from the unstable branch to stable branch; (iii) transition from excited state to a ground state. We find that the dynamical behavior of boson stars in BD theory is quite similar to that in general relativity (GR), with comparable scalar wave emission. We also demonstrate the formation of a stable boson star from a Gaussian scalar field packet with flat gravitational scalar field initial data. This suggests that boson stars can be formed in the BD theory in much the same way as in GR.Comment: 13 pages by RevTeX, epsf.sty, 16 figures, comments added, refs updated, to appear in Phys. Rev.

    Secondary literacy across the curriculum: Challenges and possibilities

    Get PDF
    This paper discusses the challenges and possibilities attendant upon successfully implementing literacy across the curriculum initiatives – or ‘school language policies’ as they have come to be known - particularly at the secondary or high school level. It provides a theoretical background to these issues, exploring previous academic discussions of school language policies, and highlights key areas of concern as well as opportunity with respect to school implementation of such policies. As such, it provides a necessary conceptual background to the subsequent papers in this special issue, which focus upon the Secondary Schools’ Literacy Initiative (SSLI) – a New Zealand funded programme that aims to establish cross-curricular language and literacy policies in secondary schools

    Thin metamaterial Luneburg lens for surface waves

    Get PDF
    Copyright © 2013 American Physical SocietyBy suitably patterning a metasurface, the phase velocity of surface waves may be manipulated. Here, a low-loss, thin (1/14th of the free-space wavelength), omnidirectional Luneburg lens, based upon a Sievenpiper “mushroom” array [Sievenpiper et al. IEEE Trans. Microwave Theory Tech. 47 2059 (1999)], is fabricated and characterized at microwave frequencies. Surface waves excited using a near-field point source on the perimeter of the lens, exit the opposite side of the lens as planar wave fronts. The electric field of the surface wave is mapped out experimentally and compared to numerical simulations
    corecore