147 research outputs found

    Mechanisms of tertiary lymphoid structure formation: cooperation between inflammation and antigenicity

    Get PDF
    To mount an effective anti-tumor immune response capable of controlling or eliminating disease, sufficient numbers of lymphocytes must be recruited to malignant tissue and allowed to sustain their effector functions. Indeed, higher infiltration of T and B cells in tumor tissue, often referred to as “hot tumors”, is prognostic for patient survival and predictive of response to immunotherapy in almost all cancer types. The organization of tertiary lymphoid structures (TLS) in solid tumors is a unique example of a hot tumor whereby T and B lymphocytes aggregate with antigen presenting cells and high endothelial venules reflecting the cellular organization observed in lymphoid tissue. Many groups have reported that the presence of preexisting TLS in tumors is associated with a superior adaptive immune response, response to immunotherapy, and improved survivorship over those without TLS. Accordingly, there is significant interest into understanding the mechanisms of how and why TLS organize so that they can be elicited therapeutically in patients with few or no TLS. Unfortunately, the most commonly used mouse models of cancer do not spontaneously form TLS, thus significantly restricting our understanding of TLS biology. This brief review will summarize our current state of knowledge of TLS neogenesis and address the current gaps in the field

    Differentiated State of Initiating Tumor Cells Is Key to Distinctive Immune Responses Seen in H-Ras

    Get PDF
    Heterogeneity in tumor immune responses is a poorly understood yet critical parameter for successful immunotherapy. In two doxycycline-inducible models where oncogenic H-RasG12V is targeted either to the epidermal basal/stem cell layer with a Keratin14-rtTA transgene (K14Ras), or committed progenitor/suprabasal cells with an Involucrin-tTA transgene (InvRas), we observed strikingly distinct tumor immune responses. On threshold doxycycline levels yielding similar Ras expression, tumor latency, and numbers, tumors from K14Ras mice had an immunosuppressed microenvironment, whereas InvRas tumors had a proinflammatory microenvironment. On a Rag1-/- background, InvRas mice developed fewer and smaller tumors that regressed over time, whereas K14Ras mice developed more tumors with shorter latency than Rag1+/+ controls. Adoptive transfer and depletion studies revealed that B-cell and CD4 T-cell cooperation was critical for tumor yield, lymphocyte polarization, and tumor immune phenotype in Rag1+/+ mice of both models. Coculture of tumor-conditioned B cells with CD4 T cells implicated direct contact for Th1 and regulatory T cell (Treg) polarization, and CD40-CD40L for Th1, Th2, and Treg generation, a response not observed from splenic B cells. Anti-CD40L caused regression of InvRas tumors but enhanced growth in K14Ras, whereas a CD40 agonist mAb had opposite effects in each tumor model. These data show that position of tumor-initiating cells within a stratified squamous epithelial tissue provokes distinct B- and CD4 T-cell interactions, which establish unique tumor microenvironments that regulate tumor development and response to immunotherap

    TGFβ1 Overexpression by Keratinocytes Alters Skin Dendritic Cell Homeostasis and Enhances Contact Hypersensitivity

    Get PDF
    Overexpression of transforming growth factor beta-1 (TGFβ1) in mouse epidermis causes cutaneous inflammation and keratinocyte hyperproliferation. Here we examined acute effects of TGFβ1 overproduction by keratinocytes on skin dendritic cells (DCs). TGFβ1 induction for 2 and 4 days increased the numbers and CD86 expression of B220+ plasmacytoid DCs (pDCs) and CD207+CD103+, CD207−CD103−CD11b+, and CD207−CD103−CD11b− dermal DCs (dDCs) in skin-draining lymph nodes (SDLNs). The dermis of TGFβ1-overexpressing mice had significantly more pDCs, CD207+CD103+ dDCs, and CD207−CD11b+ dDCs in the absence of increased dermal proliferation. Application of dye, tetramethyl rhodamine iso-thiocyanate (TRITC), in dibutylpthalate (DBP) solution after TGFβ1 induction increased the numbers of TRITC+CD207− dDCs in SDLNs, and augmented TRITC/DBP-induced Langerhans cell (LC) migration 72hours post TRITC treatment. Consistent with this, LC migration was increased in vitro by TGFβ1 overexpression in skin explants and by exogenous TGFβ1 in culture media. Transient TGFβ1 induction during DNFB sensitization increased contact hypersensitivity responses by 1.5-fold. Thus, elevated epidermal TGFβ1 alone is sufficient to alter homeostasis of multiple cutaneous DC subsets, and enhance DC migration and immune responses to contact sensitizers. These results highlight a role for keratinocyte-derived TGFβ1 in DC trafficking and in the initiation of skin inflammation

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    Transcriptional and immunohistological assessment of immune infiltration in pancreatic cancer.

    Get PDF
    Pancreatic adenocarcinoma is characterized by a complex tumor environment with a wide diversity of infiltrating stromal and immune cell types that impact the tumor response to conventional treatments. However, even in this poorly responsive tumor the extent of T cell infiltration as determined by quantitative immunohistology is a candidate prognostic factor for patient outcome. As such, even more comprehensive immunophenotyping of the tumor environment, such as immune cell type deconvolution via inference models based on gene expression profiling, holds significant promise. We hypothesized that RNA-Seq can provide a comprehensive alternative to quantitative immunohistology for immunophenotyping pancreatic cancer. We performed RNA-Seq on a prospective cohort of pancreatic tumor specimens and compared multiple approaches for gene expression-based immunophenotyping analysis compared to quantitative immunohistology. Our analyses demonstrated that while gene expression analyses provide additional information on the complexity of the tumor immune environment, they are limited in sensitivity by the low overall immune infiltrate in pancreatic cancer. As an alternative approach, we identified a set of genes that were enriched in highly T cell infiltrated pancreatic tumors, and demonstrate that these can identify patients with improved outcome in a reference population. These data demonstrate that the poor immune infiltrate in pancreatic cancer can present problems for analyses that use gene expression-based tools; however, there remains enormous potential in using these approaches to understand the relationships between diverse patterns of infiltrating cells and their impact on patient treatment outcomes

    A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway is Associated with Major Depressive Disorder

    Get PDF
    AbstractBackgroundGenome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk.MethodsWe integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested.ResultsIn GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model.ConclusionsThese post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies

    COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey

    Full text link
    We present early results from the COMAP Galactic Plane Survey conducted between June 2019 and April 2021, spanning 20<<4020^\circ<\ell<40^\circ in Galactic longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular resolution of 4.54.5^{\prime}. The full survey will span 20\ell \sim 20^{\circ}- 220220^{\circ} and will be the first large-scale radio continuum survey at 3030 GHz with sub-degree resolution. We present initial results from the first part of the survey, including diffuse emission and spectral energy distributions (SEDs) of HII regions and supernova remnants. Using low and high frequency surveys to constrain free-free and thermal dust emission contributions, we find evidence of excess flux density at 3030\,GHz in six regions that we interpret as anomalous microwave emission. Furthermore we model UCHII contributions using data from the 55\,GHz CORNISH catalogue and reject this as the cause of the 3030\,GHz excess. Six known supernova remnants (SNR) are detected at 3030\,GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 3030\,GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free-free emission. The full COMAP Galactic plane survey, to be released in 2023/2024, will be an invaluable resource for Galactic astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap
    corecore