812 research outputs found

    Public e-procurement

    Get PDF
    노트 : 3rd International Public Procurement Conference Proceeding

    Berry phases for composite fermions: effective magnetic field and fractional statistics

    Full text link
    The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states considered by Laughlin, non-trivial Berry phase statistics were demonstrated many years ago by Arovas, Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of excited composite fermions. We use the method developed by Kjonsberg, Myrheim and Leinaas to compute the Berry phase for a single composite-fermion quasiparticle, and find that it agrees with the effective magnetic field concept for composite fermions. We then evaluate the "fractional statistics", related to the change in the Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior. Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional statistics. A short report on some parts of this article has appeared previously.Comment: 14 pages, 9 figure

    Impaired hydrogen sulfide protein expression in patients with peripheral artery disease

    Get PDF
    INTRODUCTION: Hydrogen sulfide (H2S) is a gaseous signaling molecule that serves various roles in the vasculature, such as upregulating angiogenesis, vascular smooth muscle relaxation, protecting endothelial function, and regulating redox balance. Despite H2S’s positive impacts on vascular homeostasis, it is important to note that its actions depend on its concentrations. At high concentrations, H2S has been reported to increase oxidative stress damage, such as oxidation of cysteine residues and lipid peroxidation. This may indicate that H2S may act as a ‘double-edged sword’ in the field of vascular physiology. Peripheral artery disease (PAD) is an atherosclerotic disease which manifested by claudication (leg pain during walking). Growing evidence suggests that abnormal H2S level may present with vascular diseases, however, only a few animal studies investigated the H2S and H2S -mediated oxidative stress damage in vascular disease models, and there are currently no available studies for human vascular disease patients, such as patients with PAD. Therefore, the purpose of this study was to examine the H2S and oxidative stress damage in peripheral blood mononuclear cells (PBMCs) and skeletal muscle tissues from patients with PAD. METHODS: Western blot was performed using skeletal muscle tissues and PBMCs to examine protein expression of cystathionase (CTH), which catalyzes production of H2S, and glutathione peroxidase-4 (GPx-4) and catalase (CAT), which are antioxidant markers, from healthy adults (CON) and patients with PAD (PAD). RESULTS: Patients with PAD show a lower expression of CTH compared to CON (P \u3c 0.01, PAD: 1.61 ± 0.44, CON: 8.53 ± 0.46). However, CAT expression was not different between groups (P = 0.429, PAD: 0.03 ± 0.02, CON: 0.01 ± 0.01). In addition, CAT and GPx-4 expression was assessed in CON PBMCs (CAT: 5.07 ± 1.14, GPx-4: 0.63 ± 0.3). CONCLUSION: CTH protein expression in the skeletal muscle is attenuated in PAD compared to CON. However, CAT protein expression in the skeletal muscle is not different between groups. These data suggest an impairment is present in the H2S signaling system in the skeletal muscle of patients with PAD

    WaveCNV: allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing.

    Get PDF
    MotivationCopy number variations (CNVs) are a major source of genomic variability and are especially significant in cancer. Until recently microarray technologies have been used to characterize CNVs in genomes. However, advances in next-generation sequencing technology offer significant opportunities to deduce copy number directly from genome sequencing data. Unfortunately cancer genomes differ from normal genomes in several aspects that make them far less amenable to copy number detection. For example, cancer genomes are often aneuploid and an admixture of diploid/non-tumor cell fractions. Also patient-derived xenograft models can be laden with mouse contamination that strongly affects accurate assignment of copy number. Hence, there is a need to develop analytical tools that can take into account cancer-specific parameters for detecting CNVs directly from genome sequencing data.ResultsWe have developed WaveCNV, a software package to identify copy number alterations by detecting breakpoints of CNVs using translation-invariant discrete wavelet transforms and assign digitized copy numbers to each event using next-generation sequencing data. We also assign alleles specifying the chromosomal ratio following duplication/loss. We verified copy number calls using both microarray (correlation coefficient 0.97) and quantitative polymerase chain reaction (correlation coefficient 0.94) and found them to be highly concordant. We demonstrate its utility in pancreatic primary and xenograft sequencing data.Availability and implementationSource code and executables are available at https://github.com/WaveCNV. The segmentation algorithm is implemented in MATLAB, and copy number assignment is implemented [email protected] informationSupplementary data are available at Bioinformatics online

    Implementation conditions for diet and physical activity interventions and policies : an umbrella review

    Get PDF
    BACKGROUND: This umbrella review aimed at identifying evidence-based conditions important for successful implementation of interventions and policies promoting a healthy diet, physical activity (PA), and a reduction in sedentary behaviors (SB). In particular, we examined if the implementation conditions identified were intervention-specific or policy-specific. This study was undertaken as part of the DEterminants of DIet and Physical Activity (DEDIPAC) Knowledge Hub, a joint action as part of the European Joint Programming Initiative a Healthy Diet for a Healthy Life. METHODS: A systematic review of reviews and stakeholder documents was conducted. Data from nine scientific literature databases were analyzed (95 documents met the inclusion criteria). Additionally, published documentation of eight major stakeholders (e.g., World Health Organization) were systematically searched (17 documents met the inclusion criteria). The RE-AIM framework was used to categorize elicited conditions. Across the implementation conditions 25 % were identified in at least four documents and were subsequently classified as having obtained sufficient support. RESULTS: We identified 312 potential conditions relevant for successful implementation; 83 of these received sufficient support. Using the RE-AIM framework eight implementation conditions that obtained support referred to the reach in the target population; five addressed efficacy of implementation processes; 24 concerned adoption by the target staff, setting, or institutions; 43 referred to consistency, costs, and adaptations made in the implementation process; three addressed maintenance of effects over time. The vast majority of implementation conditions (87.9 %; 73 of 83) were supported by documents referring to both interventions and policies. There were seven policy-specific implementation conditions, which focused on increasing complexities of coexisting policies/legal instruments and their consequences for implementation, as well as politicians' collaboration in implementation. CONCLUSIONS: The use of the proposed list of 83 conditions for successful implementation may enhance the implementation of interventions and policies which pursue identification of the most successful actions aimed at improving diet, PA and reducing SB

    Composite-fermion crystallites in quantum dots

    Full text link
    The correlations in the ground state of interacting electrons in a two-dimensional quantum dot in a high magnetic field are known to undergo a qualitative change from liquid-like to crystal-like as the total angular momentum becomes large. We show that the composite-fermion theory provides an excellent account of the states in both regimes. The quantum mechanical formation of composite fermions with a large number of attached vortices automatically generates omposite fermion crystallites in finite quantum dots.Comment: 5 pages, 3 figure

    Autonomous stochastic resonance in fully frustrated Josephson-junction ladders

    Full text link
    We investigate autonomous stochastic resonance in fully frustrated Josephson-junction ladders, which are driven by uniform constant currents. At zero temperature large currents induce oscillations between the two ground states, while for small currents the lattice potential forces the system to remain in one of the two states. At finite temperatures, on the other hand, oscillations between the two states develop even below the critical current; the signal-to-noise ratio is found to display array-enhanced stochastic resonance. It is suggested that such behavior may be observed experimentally through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.
    • …
    corecore