6 research outputs found

    Global periodicity conditions for maps and recurrences via Normal Forms

    Get PDF
    We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences.Comment: 25 page

    Non-autonomous 2-periodic Gumovski-Mira difference equations

    Get PDF
    We consider two types of non-autonomous 2-periodic Gumovski-Mira difference equations. We show that while the corresponding autonomous recurrences are conjugated, the behavior of the sequences generated by the 2-periodic ones differ dramatically: in one case the behavior of the sequences is simple (integrable) and in the other case it is much more complicated (chaotic). We also present a global study of the integrable case that includes which periods appear for the recurrence.Comment: 20 pages, 11 figure

    Some properties of the k-dimensional Lyness' map

    Full text link
    This paper is devoted to study some properties of the k-dimensional Lyness' map. Our main result presentes a rational vector field that gives a Lie symmetry for F. This vector field is used, for k less or equal to 5 to give information about the nature of the invariant sets under F. When k is odd, we also present a new (as far as we know) first integral for F^2 which allows to deduce in a very simple way several properties of the dynamical system generated by F. In particular for this case we prove that, except on a given codimension one algebraic set, none of the positive initial conditions can be a periodic point of odd period.Comment: 22 pages; 3 figure
    corecore