277 research outputs found
Operationalizing Individual Fairness with Pairwise Fair Representations
We revisit the notion of individual fairness proposed by Dwork et al. A
central challenge in operationalizing their approach is the difficulty in
eliciting a human specification of a similarity metric. In this paper, we
propose an operationalization of individual fairness that does not rely on a
human specification of a distance metric. Instead, we propose novel approaches
to elicit and leverage side-information on equally deserving individuals to
counter subordination between social groups. We model this knowledge as a
fairness graph, and learn a unified Pairwise Fair Representation (PFR) of the
data that captures both data-driven similarity between individuals and the
pairwise side-information in fairness graph. We elicit fairness judgments from
a variety of sources, including human judgments for two real-world datasets on
recidivism prediction (COMPAS) and violent neighborhood prediction (Crime &
Communities). Our experiments show that the PFR model for operationalizing
individual fairness is practically viable.Comment: To be published in the proceedings of the VLDB Endowment, Vol. 13,
Issue.
{iFair}: {L}earning Individually Fair Data Representations for Algorithmic Decision Making
People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: ensuring that each ethnic or social group receives its fair share in the outcome of classifiers and rankings. In contrast, the alternative paradigm of individual fairness has received relatively little attention. This paper introduces a method for probabilistically clustering user records into a low-rank representation that captures individual fairness yet also achieves high accuracy in classification and regression models. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. Since the case for fairness is ubiquitous across many tasks, we aim to learn general representations that can be applied to arbitrary downstream use-cases. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on two real-world datasets. Our experiments show substantial improvements over the best prior work for this setting
Development And Analysis Of Next-Generation Polymeric And Bio-Ceramic Based Orthopedic Scaffolds By Advanced Manufacturing Techniques
Gliomas express mutant isocitrate dehydrogenases producing excessive amounts of D 2-hydroxyglutarate (D2HG) and releasing some of it into the environment. The immune surveillance is reduced as a result, however, the mechanisms behind lymphocyte suppression by the D2HG stereoisomer remain unknown. I incubated Jurkat T cells with D2HG at concentrations present within and surrounding gliomas, or its obverse L2HG stereoisomer, and quantified 2HG isomers within washed cells by TSPC derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was found in quiescent cells in double the amount of L2HG. External D2HG or L2HG increased the level of the provided stereoisomer in a transient, concentration-dependent process. IL-2 expression, even when maximally elicited by A23187 and PMA, was inhibited and ultimately abolished by exogenous D2HG in a concentration-dependent manner. Notably, a significant reduction occurred at just twice its basal intracellular level. In contrast, L2HG was only moderately inhibitory. IL-2 expression is regulated by increased intracellular Ca++ that stimulates Calcineurin to dephosphorylate cytoplasmic phospho-NFAT to enable its nuclear translocation. Besides, to induce IL-2, AP-1 complex which is downstream of ERK needs to ligate. D2HG inhibited p-ERK in Jurkat T cells, impairing the AP-1 complex. D2HG abolished expression of a stably-integrated NFAT-driven luciferase reporter, and this concentration-dependent inhibition precisely paralleled inhibition of IL-2. D2HG did not affect intracellular Ca++. Rather, surface Plasmon resonance showed D2HG, but not L2HG, bound Calcineurin. D2HG, but not L2HG, inhibited Ca++-dependent Calcineurin phosphatase activity. Thus, D2HG is a stereoselective Calcineurin phosphatase inhibitor that prevents NFAT dephosphorylation, and so abolishes IL-2 transcription in stimulated Jurkat cells. This occurs at D2HG concentrations found within and adjacent to gliomas independent of delayed epigenetic modulation of transcription
Search Bias Quantification: Investigating Political Bias in Social Media and Web Search
Users frequently use search systems on the Web as well as online social media to learn about ongoing events and public opinion on personalities. Prior studies have shown that the top-ranked results returned by these search engines can shape user opinion about the topic (e.g., event or person) being searched. In case of polarizing topics like politics, where multiple competing perspectives exist, the political bias in the top search results can play a significant role in shaping public opinion towards (or away from) certain perspectives. Given the considerable impact that search bias can have on the user, we propose a generalizable search bias quantification framework that not only measures the political bias in ranked list output by the search system but also decouples the bias introduced by the different sources—input data and ranking system. We apply our framework to study the political bias in searches related to 2016 US Presidential primaries in Twitter social media search and find that both input data and ranking system matter in determining the final search output bias seen by the users. And finally, we use the framework to compare the relative bias for two popular search systems—Twitter social media search and Google web search—for queries related to politicians and political events. We end by discussing some potential solutions to signal the bias in the search results to make the users more aware of them.publishe
Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations
To help their users to discover important items at a particular time, major
websites like Twitter, Yelp, TripAdvisor or NYTimes provide Top-K
recommendations (e.g., 10 Trending Topics, Top 5 Hotels in Paris or 10 Most
Viewed News Stories), which rely on crowdsourced popularity signals to select
the items. However, different sections of a crowd may have different
preferences, and there is a large silent majority who do not explicitly express
their opinion. Also, the crowd often consists of actors like bots, spammers, or
people running orchestrated campaigns. Recommendation algorithms today largely
do not consider such nuances, hence are vulnerable to strategic manipulation by
small but hyper-active user groups.
To fairly aggregate the preferences of all users while recommending top-K
items, we borrow ideas from prior research on social choice theory, and
identify a voting mechanism called Single Transferable Vote (STV) as having
many of the fairness properties we desire in top-K item (s)elections. We
develop an innovative mechanism to attribute preferences of silent majority
which also make STV completely operational. We show the generalizability of our
approach by implementing it on two different real-world datasets. Through
extensive experimentation and comparison with state-of-the-art techniques, we
show that our proposed approach provides maximum user satisfaction, and cuts
down drastically on items disliked by most but hyper-actively promoted by a few
users.Comment: In the proceedings of the Conference on Fairness, Accountability, and
Transparency (FAT* '19). Please cite the conference versio
EECLA: A Novel Clustering Model for Improvement of Localization and Energy Efficient Routing Protocols in Vehicle Tracking Using Wireless Sensor Networks
Due to increase of usage of wireless sensor networks (WSN) for various purposes leads to a required technology in the present world. Many applications are running with the concepts of WSN now, among that vehicle tracking is one which became prominent in security purposes. In our previous works we proposed an algorithm called EECAL (Energy Efficient Clustering Algorithm and Localization) to improve accuracy and performed well. But are not focused more on continuous tracking of a vehicle in better aspects. In this paper we proposed and refined the same algorithm as per the requirement. Detection and tracking of a vehicle when they are in larges areas is an issue. We mainly focused on proximity graphs and spatial interpolation techniques for getting exact boundaries. Other aspect of our work is to reduce consumption of energy which increases the life time of the network. Performance of system when in active state is another issue can be fixed by setting of peer nodes in communication. We made an attempt to compare our results with the existed works and felt much better our work. For handling localization, we used genetic algorithm which handled good of residual energy, fitness of the network in various aspects. At end we performed a simulation task that proved proposed algorithms performed well and experimental analysis gave us faith by getting less localization error factor
"Learn the Facts About COVID-19": Analyzing the Use of Warning Labels on TikTok Videos
During the COVID-19 pandemic, health-related misinformation and harmful content shared online had a significant adverse effect on society. To mitigate this adverse effect, mainstream social media platforms employed soft moderation interventions (i.e., warning labels) on potentially harmful posts. Despite the recent popularity of these moderation interventions, we lack empirical analyses aiming to uncover how these warning labels are used in the wild, particularly during challenging times like the COVID-19 pandemic. In this work, we analyze the use of warning labels on TikTok, focusing on COVID-19 videos. First, we construct a set of 26 COVID-19 related hashtags, then we collect 41K videos that include those hashtags in their description. Second, we perform a quantitative analysis on the entire dataset to understand the use of warning labels on TikTok. Then, we perform an in-depth qualitative study, using thematic analysis, on 222 COVID-19 related videos to assess the content and the connection between the content and the warning labels. Our analysis shows that TikTok broadly applies warning labels on TikTok videos, likely based on hashtags included in the description. More worrying is the addition of COVID-19 warning labels on videos where their actual content is not related to COVID-19 (23% of the cases in a sample of 143 English videos that are not related to COVID-19). Finally, our qualitative analysis on a sample of 222 videos shows that 7.7% of the videos share misinformation/harmful content and do not include warning labels, 37.3% share benign information and include warning labels, and that 35% of the videos that share misinformation/harmful content (and need a warning label) are made for fun. Our study demonstrates the need to develop more accurate and precise soft moderation systems, especially on a platform like TikTok that is extremely popular among people of younger age
- …