28 research outputs found

    Oxidative/Nitrosative Stress and Protein Damages in Aqueous Humor of Hyperglycemic Rabbits: Effects of Two Oral Antidiabetics, Pioglitazone and Repaglinide

    Get PDF
    The present study was undertaken to determine oxidative/nitrosative stress in aqueous humor of alloxan-induced hyperglycemic rabbits and to investigate the effects of two oral antidiabetic drugs, pioglitazone from peroxisome proliferator-activated receptor gamma (PPARγ) agonists and repaglinide from nonsulfonylurea KATP channel blockers. Ascorbic acid (AA), glutathione (GSH), total antioxidant status (TAS), lipid peroxidation products (LPO), total nitrites (NO2), advanced oxidized protein products (AOPP), and protein carbonyl groups (PCG) were determined using respective colorimetric and ELISA methods. In our hyperglycemic animals, AA decreased by 77%, GSH by 45%, and TAS by 66% as compared to control animals. Simultaneously, LPO increased by 78%, PCG by 60%, AOPP by 84%, and NO2 by 70%. In pioglitazone-treated animals, AA and TAS increased above control values while GSH and PCG were normalized. In turn, LPO was reduced by 54%, AOPP by 84%, and NO2 by 24%, in relation to hyperglycemic rabbits. With repaglinide, AA and TAS were normalized, GSH increased by 20%, while LPO decreased by 45%. Our results show that pioglitazone and repaglinide differ significantly in their ability to ameliorate the parameters like NO2, PCG, and AOPP. In this area, the multimodal action of pioglitazone as PPARγ agonist is probably essential

    Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges

    Get PDF
    Results from numerous pre-clinical studies suggest that a well known anticonvulsant drug valproic acid (VPA) and other short-chain fatty acids (SCFAs) cause significant inhibition of cancer cell proliferation by modulating multiple signaling pathways. First of all, they act as histone deacetylase (HDAC) inhibitors (HDIs), being involved in the epigenetic regulation of gene expression. Afterward, VPA is shown to induce apoptosis and cell differentiation, as well as regulate Notch signaling. Moreover, it up-regulates the expression of certain G protein-coupled receptors (GPCRs), which are involved in various signaling pathways associated with cancer. As a consequence, some pre-clinical and clinical trials were carried out to estimate anticancer effectiveness of VPA, in monotherapy and in new drug combinations, while other SCFAs were tested in pre-clinical studies. The present manuscript summarizes the most important information from the literature about their potent anticancer activities to show some future perspectives related to epigenetic therapy

    LC-UV and UPLC-MS/MS methods for analytical study on degradation of three antihistaminic drugs, ketotifen, epinastine and emedastine: percentage degradation, degradation kinetics and degradation pathways at different pH

    Get PDF
    Evaluation of pH-dependent reactivity of drugs is an essential component in the pharmaceutical industry. Thus, the stability of three antihistaminic drugs, i.e., ketotifen, epinastine and emedastine, was tested, in solutions of five pH values, i.e., 1.0, 3.0, 7.0, 10.0 and 13.0, at high temperature (70 °C). LC-UV isocratic methods were developed to estimate percentage degradation as well as the kinetics of degradation. Generally, epinastine was shown to be the most stable compound with degradation below 14%. Emedastine was labile in all pH conditions, with degradation in the range 29.26–51.88%. Ketotifen was moderately stable at pH 1–7 (degradation ≤ 14.04%). However, at pH ≥ 10, its degradation exceeded 30%. The kinetics of degradation of ketotifen, epinastine and emedastine was shown as a pseudo-first-order reaction with the rate constants in the range 10−4–10−3 min−1 Finally, the UPLC-MS/MS method was applied to identify the main degradants and suggest degradation pathways. Degradation of ketotifen proceeded with oxidation and demethylation in the piperidine ring of the molecule. As far as epinastine was concerned, opening of the imidazole ring with formation of the amide group was observed. Unfortunately, no degradation products for emedastine were detected. The present results complete the literary data and may be important for both manufacturing of these drugs and their administration to patients

    Photodegradation of the H1H^{1} antihistaminic topical drugs emedastine, epinastine, and ketotifen and ROS tests for estimations of their potent phototoxicity

    Get PDF
    In this study, important H1 antihistaminic drugs, i.e., emedastine (EME), epinastine (EPI), and ketotifen (KET), were irradiated with UV/Vis light (300–800 nm) in solutions of different pH values. Next, they were analyzed by new high performance liquid chromatography (HPLC) methods, in order to estimate the percentage of degradation and respective kinetics. Subsequently, ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) was used to identify their photodegradation products and to propose degradation pathways. In addition, the peroxidation of linoleic acid and generation of singlet oxygen (SO) and superoxide anion (SA) were examined, together with the molar extinction coeffcient (MEC) evaluation, to estimate their phototoxic risk. The photodegradation of all EME, EPI, and KET followed pseudo first-order kinetics. At pH values of 7.0 and 10.0, EPI was shown to be rather stable. However, its photostability was lower at pH 3.0. EME was shown to be photolabile in the whole range of pH values. In turn, KET was shown to be moderately labile at pH 3.0 and 7.0. However, it degraded completely in the buffer of pH 10.0. As a result, several photodegradation products were separated and identified using the UPLC-MS/MS method. Finally, our ROS assays showed a potent phototoxic risk in the following drug order: EPI < EME < KET. All of these results may be helpful for manufacturing, storing, and applying these substantial drugs, especially in their ocular formulations

    Dissolution profiles of perindopril and indapamide in their fixed-dose formulations by a new HPLC method and different mathematical approaches

    Get PDF
    A new HPLC method was introduced and validated for simultaneous determination of perindopril and indapamide. Validation procedure included specificity, sensitivity, robustness, stability, linearity, precision and accuracy. The method was used for the dissolution test of perindopril and indapamide in three fixed-dose formulations. The dissolution procedure was optimized using different media, different pH of the buffer, surfactants, paddle speed and temperature. Similarity of dissolution profiles was estimated using different model-independent and model-dependent methods and, additionally, by principal component analysis (PCA). Also, some kinetic models were checkedwith dissolved amounts of drugs as a function of time

    Carbon Dots/Iron Oxide Nanoparticles with Tuneable Composition and Properties

    Get PDF
    We present a simple strategy to generate a family of carbon dots/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor (derived via thermal treatment of ethanolamine and citric acid at 180 °C), while polyethylene glycol serves as the passivation agent. By varying the molar ratio of the reactants, a series of C/Fe-NPs have been synthesized with tuneable elemental composition in terms of C, H, O, N and Fe. The quantum yield is enhanced from 6 to 9% as the carbon content increases from 27 to 36 wt%, while the room temperature saturation magnetization is improved from 4.1 to 17.7 emu/g as the iron content is enriched from 17 to 31 wt%. In addition, the C/Fe-NPs show excellent antimicrobial properties, minimal cytotoxicity and demonstrate promising bioimaging capabilities, thus showing great potential for the development of advanced diagnostic tools

    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts

    Get PDF
    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan

    Determination of Chemical Stability of Two Oral Antidiabetics, Metformin and Repaglinide in the Solid State and Solutions Using LC-UV, LC-MS, and FT-IR Methods

    No full text
    Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it is suitable for estimating degradation kinetics. Finally, the respective LC-MS method was used to identify the degradation products. In addition, using FT-IR method, the stability of metformin and repaglinide was scrutinized in the presence of polyvinylpyrrolidone (PVP), mannitol, magnesium stearate, and lactose. Significant degradation of metformin, following the first order kinetics, was observed in alkaline medium. In the case of repaglinide, the most significant and quickest degradation, following the first order kinetics, was observed in acidic and oxidative media (0.1 M HCl and 3% H2O2). Two new degradation products of metformin and nine new degradation products of repaglinide were detected and identified when the stressed samples were examined by our LC-MS method. What is more, the presence of PVP, mannitol, and magnesium stearate proved to affect the stability of metformin, while repaglinide stability was affected in the presence of PVP and magnesium stearate

    Analytical tools for determination of new oral antidiabetic drugs, glitazones, gliptins, gliflozins and glinides, in bulk materials, pharmaceuticals and biological samples

    No full text
    The review presents analytical methods for determination of new oral drugs for the treatment of type 2 diabetes mellitus (T2DM), focusing on peroxisome proliferator-activated receptor gamma agonists (glitazones), dipeptidyl peptidase 4 inhibitors (gliptins) and sodium/glucose co-transporter 2 inhibitors (gliflozins). Drugs derived from prandial glucose regulators, such as glinides, are considered because they are present in some new therapeutic options. The review presents analytical procedures suitable for determination of the drugs in bulk substances, such as pharmaceuticals and biological samples, including HPLC-UV, HPLC/LC-MS, TLC/HPTLC, CE/CE-MS, spectrophotometric (UV/VIS), spectrofluorimetric and electrochemical methods, taken from the literature over the past ten years (2006-2016). Some new procedures for extraction, separation and detection of the drugs, including solid phase extraction with molecularly imprinted polymers (SPE-MIP), liquid phase microextraction using porous hollow fibers (HP-LPME), HILIC chromatography, micellar mobile phases, ion mobility spectrometry (IMS) and isotopically labeled internal standards, are discussed
    corecore