267 research outputs found

    Optimization of parameters for application of sericin on cotton knits

    Get PDF
    In this study, a process has been developed for durable coating of sericin on cotton knits. Treated samples are tested for wicking, stiffness, moisture vapour transmission rate and air permeability. Results show that cotton knits become more hydrophilic on application of sericin. Air and water vapour transmission improve, thus making the cotton sample suitable for applications in skin moisturizing and skin healing. These results indicate that sericin can be used to develop a durable finish on cotton for use in medical and sports garments

    Unsupervised Medical Image Translation Using Cycle-MedGAN

    Full text link
    Image-to-image translation is a new field in computer vision with multiple potential applications in the medical domain. However, for supervised image translation frameworks, co-registered datasets, paired in a pixel-wise sense, are required. This is often difficult to acquire in realistic medical scenarios. On the other hand, unsupervised translation frameworks often result in blurred translated images with unrealistic details. In this work, we propose a new unsupervised translation framework which is titled Cycle-MedGAN. The proposed framework utilizes new non-adversarial cycle losses which direct the framework to minimize the textural and perceptual discrepancies in the translated images. Qualitative and quantitative comparisons against other unsupervised translation approaches demonstrate the performance of the proposed framework for PET-CT translation and MR motion correction.Comment: Submitted to EUSIPCO 2019, 5 page

    Cardiac anisotropy in boundary-element models for the electrocardiogram

    Get PDF
    The boundary-element method (BEM) is widely used for electrocardiogram (ECG) simulation. Its major disadvantage is its perceived inability to deal with the anisotropic electric conductivity of the myocardial interstitium, which led researchers to represent only intracellular anisotropy or neglect anisotropy altogether. We computed ECGs with a BEM model based on dipole sources that accounted for a “compound” anisotropy ratio. The ECGs were compared with those computed by a finite-difference model, in which intracellular and interstitial anisotropy could be represented without compromise. For a given set of conductivities, we always found a compound anisotropy value that led to acceptable differences between BEM and finite-difference results. In contrast, a fully isotropic model produced unacceptably large differences. A model that accounted only for intracellular anisotropy showed intermediate performance. We conclude that using a compound anisotropy ratio allows BEM-based ECG models to more accurately represent both anisotropies

    Global public policy, transnational policy communities, and their networks

    Get PDF
    Public policy has been a prisoner of the word "state." Yet, the state is reconfigured by globalization. Through "global public–private partnerships" and "transnational executive networks," new forms of authority are emerging through global and regional policy processes that coexist alongside nation-state policy processes. Accordingly, this article asks what is "global public policy"? The first part of the article identifies new public spaces where global policies occur. These spaces are multiple in character and variety and will be collectively referred to as the "global agora." The second section adapts the conventional policy cycle heuristic by conceptually stretching it to the global and regional levels to reveal the higher degree of pluralization of actors and multiple-authority structures than is the case at national levels. The third section asks: who is involved in the delivery of global public policy? The focus is on transnational policy communities. The global agora is a public space of policymaking and administration, although it is one where authority is more diffuse, decision making is dispersed and sovereignty muddled. Trapped by methodological nationalism and an intellectual agoraphobia of globalization, public policy scholars have yet to examine fully global policy processes and new managerial modes of transnational public administration

    A novel technique for detoxification of phenol from wastewater: Nanoparticle Assisted Nano Filtration (NANF)

    Get PDF
    © 2016 Naidu et al. Background: Phenol is one of the most versatile and important organic compound. It is also a growing concern as water pollutants due to its high persistence and toxicity. Removal of Phenol from wastewaters was investigated using a novel nanoparticle adsorption and nanofiltration technique named as Nanoparticle Assisted Nano Filtration (NANF). Methods: The nanoparticle used for NANF study were silver nanoparticles and synthesized to three distinct average particle sizes of 10 nm, 40 nm and 70 nm. The effect of nanoparticle size, their concentrations and their tri and diparticle combinations upon phenol removal were studied. Results: Total surface areas (TSA) for various particle size and concentrations have been calculated and the highest was 4710 × 1012 nm2 for 10 nm particles and 180 ppm concentration while the lowest was for 2461 × 1011 for 70 nm and 60 ppm concentrations. Tri and diparticle studies showed more phenol removal % than that of their individual particles, particularly for using small particles on large membrane pore size and large particles at low concentrations. These results have also been confirmed with COD and toxicity removal studies. Conclusions: The combination of nanoparticles adsorption and nanofiltration results in high phenol removal and mineralization, leading to the conclusion that NANF has very high potential for treating toxic chemical wastewaters

    Closed-form analytical expressions for the potential fields generated by triangular monolayers with linearly distributed source strength

    Get PDF
    The solution of the mixed boundary value problem of potential theory involves the computation of the potential field generated by monolayer and double layer source distributions on surfaces at which boundary conditions are known. Closed-form analytical expressions have been described in the literature for the potential field generated by double layers having a linearly distributed strength over triangular source elements. This contribution presents the corresponding expression for the linearly distributed monolayer strength. The solution is shown to be valid for all observation points in space, including those on the interior, edges and vertices of the source triangle

    Enzymatic processing of protein-based fibers

    Get PDF
    Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)

    Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    Get PDF
    BACKGROUND: Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. METHODS: We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. RESULTS: We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. CONCLUSIONS: Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described

    Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

    Get PDF
    Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy

    Editors’ Introduction: An Overview of the Educational Administration and Leadership Curriculum: Traditions of Islamic Educational Administration and Leadership in Higher Education

    Get PDF
    This chapter provides an overview of several topics relevant to constructing an approach to teaching educational administration and leadership in Muslim countries. First, it places the topic in the context of the changing nature and critiques of the field that argue for a greater internationalisation to both resist some of the negative aspects of globalisation and to represent countries’ traditions in the professional curriculum. Then, it identifies literature that presents the underlying principles and values of Islamic education that guide curriculum and pedagogy and shape its administration and leadership including the Qur’an and Sunnah and the classical educational literature which focuses on aims, values and goals of education as well as character development upon which a ‘good’ society is built. This is followed by a section on the Islamic administration and leadership traditions that are relevant to education, including the values of educational organisations and how they should be administered, identifying literature on the distinctive Islamic traditions of leadership and administrator education and training as it applies to education from the establishment of Islam and early classical scholars and senior administrators in the medieval period who laid a strong foundation for a highly sophisticated preparation and practice of administration in philosophical writings and the Mirrors of Princes writings, and subsequent authors who have built upon it up to the contemporary period. The final section provides an overview of the chapters in this collection
    corecore