26 research outputs found

    Groundwater and Contaminant Hydrology

    Get PDF

    Delineation of potential managed aquifer recharge sites of Kuchlak sub-basin, Balochistan, using remote sensing and GIS

    Get PDF
    In the Kuchlak Sub-Basin (Pakistan), groundwater is overexploited, resulting in growing stress on groundwater resources. The water table level has declined rapidly due to intensive pumping. Artificial recharge methods and good management strategies are vital for the sustainable production of groundwater resources. Managed aquifer recharge is an artificial way of recharging the subsurface aquifers using surplus surface water, treated wastewater, and stormwater. It is a potential strategy for increasing freshwater supply and adapting to climate change. The present study proposes a method to delineate potential zones for MAR suitability in the Kuchlak Sub-Basin. INOWAS, a web-based tool, is utilized for narrowing down the available MAR techniques based on the hydrogeologic parameter and objectives of the study area. A geographic information system (GIS) coupled with the multi-criteria decision analysis (MCDA), commonly known as GIS-MCDA, is used to develop the MAR suitability map. Six criterion maps, including geology, land use, slope analysis, drainage density, soil, and rainfall, were created in ArcGIS for suitability mapping. The criterion maps are ranked and weighted based on their relative contribution to the groundwater recharge and published literature using the Multi Influence Factor (MIF) method. The final suitability map was developed by overlaying all the criterion maps using a weighted linear combination (WLC) technique. The MAR suitability map was divided into five zones, namely, very high, high, moderate, very low, and low. The unsuitable zones reflect the urban and slope constraints that reduce surface infiltration. The suitability map reveals that 45% of the Kuchlak Sub-Basin exists in a very high-high suitability zone, 33% in moderate, and 17% in a very low-low suitability zone, while 5% of the study area was unsuitable due to the urban and slope constraints. The MAR suitability map developed in this study can serve as a basis for conducting a focused analysis of MAR implementation. Furthermore, the technique and results of this study may aid in mapping MAR suitability in any arid or semi-arid region

    Appraisal of Geotechnical Characteristics of Ormara Soil, Baluchistan, Pakistan

    Get PDF
    Ormara is located 240 km west of Karachi which is a coastal and port city (25° 16' 29N, 64° 35' 10E) ofPakistan. Present study evaluates engineering properties of soils of Ormara for future construction plans and possibleexpansions in the area. Fifty bore holes were done in study area at depths of 20m, 40m and some (10 bore holes) were60m deep. The study area was divided into three major zones i.e. Foot hills, on-shore and off-shore. Groundwater wasencountered at depths of 2.75m on onshore and offshore zones and at 3.65m depth in foothill zone. Laboratory testingi.e. moisture content (12 to 38 %), liquid limit (from 26 to 34), plasticity index (10 to 18) of soil samples indicate thatsoils are low plastic to moderate plastic in nature. Soil samples of granular soils indicate angles of internal friction (ø)varying from 260- 36ºin upper sand layers while 260 to 30º in lower silt layers (encountered after the clay layer) andCohesion ranges 0 to 0.04kg/cm2 in all three zones. Further, unconsolidated undrained triaxial compression tests on aclayey soil sample indicated an undrained cohesion value of 28 kPa. Density values ranges from 1.6 to 2.05gm/cm3.Consolidation (Cv = 0.20 to 0.40 cm2/minute, Cc = 0.149 to 0.17) has been calculated for clay layer. Chemical testscarried out on soil samples indicated that soil and water both are reactive aggressively and may cause corrosion to steeland concrete disintegration

    Benefits of the successive GPM based satellite precipitation estimates IMERG–V03, –V04, –V05 and GSMaP–V06, –V07 over diverse geomorphic and meteorological regions of Pakistan

    Get PDF
    Launched in 2014, the Global Precipitation Measurement (GPM) mission aimed at ensuring the continuity with the Tropical Rainfall Measuring Mission (TRMM) launched in 1997 that has provided unprecedented accuracy in Satellite Precipitation Estimates (SPEs) on the near-global scale. Since then, various SPE versions have been successively made available from the GPM mission. The present study assesses the potential benefits of the successive GPM based SPEs product versions that include the Integrated Multi–Satellite Retrievals for GPM (IMERG) version 3 to 5 (–v03, –v04, –v05) and the Global Satellite Mapping of Precipitation (GSMaP) version 6 to 7 (–v06, –v07). Additionally, the most effective TRMM based SPEs products are also considered to provide a first insight into the GPM effectiveness in ensuring TRMM continuity. The analysis is conducted over different geomorphic and meteorological regions of Pakistan while using 88 precipitations gauges as the reference. Results show a clear enhancement in precipitation estimates that were derived from the very last IMERG–v05 in comparison to its two previous versions IMERG–v03 and –v04. Interestingly, based on the considered statistical metrics, IMERG–v03 provides more consistent precipitation estimate than IMERG–v04, which should be considered as a transition IMERG version. As expected, GSMaP–v07 precipitation estimates are more accurate than the previous GSMaP–v06. However, the enhancement from the old to the new version is very low. More generally, the transition from TRMM to GPM is successful with an overall better performance of GPM based SPEs than TRMM ones. Finally, all of the considered SPEs have presented a strong spatial variability in terms of accuracy with none of them outperforming the others, for all of the gauges locations over the considered regions

    Suitability Analysis of Groundwater for Eco-friendly Agricultural Growths in Food Basket of Pakistan

    Get PDF
    Water is an important component of earth’s atmosphere and it sustains ecosystems, agriculture and human settlements on earth (Samson et al., 2010). Salinity, sodicity and toxicity generally need to be considered for the evaluation of suitable quality of groundwater for irrigation (Khan et al., 2014; Cobbina et al., 2012; Todd and Mays, 2005). In Thal Doab Aquifer (TDA) groundwater occurs as a layer of fresh water over saline water and its availability is subjected to recharging potency of the Indus and Chenab rivers (Hussain et al., 2017 a, 2016 a)

    Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan

    No full text
    In order to determine the groundwater resources and potentials of the Khanewal District of Pakistan, a geophysical method in combination with pumping test data were used. An analytical relationship between the aquifer parameters interpreted from surface geoelectrical method and pumping test was established in order to estimate aquifer parameters from surface measurements where no pumping tests exist. For the said purpose, 48 geoelectric investigations were carried out using Schlumberger vertical electrical sounding (VES). Seven of the soundings were conducted where pumping tests had been carried out at borehole sites. The vertical electrical sounding stations were interpreted, and resistivities and thickness parameters were calculated. The values of transmissivity and hydraulic conductivity were calculated using the Dar Zarrouk parameter. Transmissivity values obtained from pumping test data and the VES method range between 954 – 4263 m2/day and 200 – 5600 m2/day respectively. Hydraulic conductivity values determined from pumping test data and geoelectrical technique range between 15.9 – 60.9 m/day and 29.76 - 72.3 m/day respectively. The low values of transmissivity and hydraulic conductivity indicate clay or shale while high values are due to the presence of sand or gravel. A comparison of the transmissivity values obtained from pumping test data and surface geoelectrical method shows a positive correlation (R2 =0.90). Similarly, the regression between hydraulic conductivity determined from the pumping test data and the geoelectrical method is also positively correlated (R2 =0.96). The results provide a quick and useful estimation of aquifer properties and potentials

    Analiza zmiany amplitudy z offsetem (AVO) w poziomie złożowym piaskowców kredowych w celu określenia odpowiedzi sejsmicznej na modelowanie zastępowania medium nasycającego (FRM)

    No full text
    Wykorzystanie teorii Gassmana w modelowaniu zastępowania medium nasycającego (fluid replacement modeling – FRM) przestrzeń porową pozwala na stworzenie syntetycznych modeli ośrodka geologicznego o różnym stopniu nasycenia. Metodyka FRM została wykorzystana w skałach zbiornikowych złoża gazu ziemnego Sawan (środkowy basen Indusu, Pakistan) zlokalizowanego w poziomie piaszczystym C kredowej formacji Lower Goru. W badaniach wykorzystano sejsmikę w wersji post-stack oraz dane otworowe (Sawan-01 oraz Sawan-08). Analizę petrofizyczną danych otworowych przeprowadzono w celu wstępnego prognozowania stref nasyconych gazem w lokalizacjach odwiertów, a następnie poprzez dowiązanie danych sejsmicznych do otworowych przeprowadzono predykcję nasycenia dla całego wolumenu sejsmicznego 3D. Analiza zmian amplitudy z offsetem (AVO) w obrębie interwału perspektywicznego prowadzona była dla aktualnego poziomu nasycenia skał zbiornikowych in situ oraz dla modelowanego przypadku zmiany parametrów nasycenia (nasycenie gazem 80%, nasycenie wodą złożową 20%). Parametry elastyczne złoża zostały oszacowane na podstawie wzorów Gassmanna. Odpowiedź AVO dla danych in situ oraz dla danych syntetycznych FRM wskazuje na IV klasę AVO. Obserwowany wzrost amplitudy w funkcji kąta padania dla modeli FRM wykazuje czułość metody AVO na zmianę medium nasycającego przestrzeń porową. Zmiana parametrów złoża związana ze zmianą stopnia nasycenia medium i obserwowaną zmianą w odpowiedzi AVO potwierdza efektywność zastosowanej metody w określaniu litologii i nasycenia skały złożowej. Wykorzystana metodologia pozwoli na dokładniejszą charakterystykę formacji złożowych zarówno w obszarze badań, jak również w innych rejonach świata

    Assessment of Aquifer Vulnerability Using Integrated Geophysical Approach in Weathered Terrains of South China

    No full text
    Despite being rich in groundwater resources, assessment of hard-rock aquifers in many areas of Asia is difficult given their strong heterogeneity. However, delineation of such aquifers is essential for estimation of the groundwater reserves. In addition, the vulnerability of hard-rock aquifers is controlled by the weathered/fractured zones because it is the place where most of the groundwater reserves are contained. In this work, an integrated approach of the electrical resistivity tomography (ERT), high precision magnetic, X-ray Diffraction (XRD), physicochemical analysis and pumping test data was performed to investigate the hard-rock aquifers occurring in the weathered terrains. This approach reveals seven fractures/faults (F1 to F7) and four discrete layers such as the topsoil cover, highly weathered, partly weathered and unweathered rock. The groundwater resources are estimated as a function of different parameters i.e., aquifer resistivity (ρo), transverse unit resistance (Tr), hydraulic conductivity (K), transmissivity (T), rock formation factor (F) and rock porosity (Φ). These parameters divide the groundwater resources into four aquifer potential zones with specific ranges of ρo, Tr, K, T, F and Φ i.e., high, medium, poor, and negligible potential aquifers. The results suggest that the high potential aquifer reserves are contained within the weathered/fractured and fault zones. The X-ray diffraction (XRD) technique analyzes quartz as the major mineral (>50%). The physicochemical and geophysical analysis suggests good groundwater quality in the investigated area. The integrated results are highly satisfied with the available borehole information. This integrated geophysical approach for the estimation of groundwater resources is not only applicable in the weathered terrains of South China, but also in many other areas of the weathered/fractured aquifer in Asia and beyond

    Estimation of Hydrogeological Parameters by Using Pumping, Laboratory Data, Surface Resistivity and Thiessen Technique in Lower Bari Doab (Indus Basin), Pakistan

    No full text
    Determination of hydrological properties of the aquifer is of fundamental importance in hydrogeological and geotechnical studies. An attempt has been made to refine the hydraulic conductivity values computed from the pumping test by utilizing the hydraulic values computed in the laboratory. This study uses hydraulic conductivity computed in the laboratory of rock samples, pumping test data in conjunction with the empirical equations, and vertical electric sounding (VES) to determine the hydraulic properties of Lower Bari Doab (LBD) in the Indus Basin of Pakistan. The utilized dataset comprises pumping test results (Kpump) from 17 water wells, hydraulic conductivity values (Klab) of different grain size subsurface lithologies, and 50 VES stations. To this end, the investigated area is divided into 17 polygons by using the Thiessen technique, and equal distribution/weight of conductivities values is assigned to 17 polygons (one polygon around each water well where pumping test is conducted). The true resistivity ranging from 20–90 ohm-m along with an average thickness of the aquifer is computed using the VES data for each polygon. A novel approach has been developed to estimate the hydraulic conductivity of the aquifer by combining laboratory data and pumping test which is used to compute the other hydraulic properties. The calculated hydraulic conductivity, transmissivity, and tortuosity values of the aquifer range from 4.4 to 85.6 m/day, 674 to 8986 m2/day, and 13 to 20, respectively. The porosity ranges from 32 to 45% and the formation factor values fall in the range 4 to 12. Higher hydraulic conductivities were encountered in the southern portion of the area near the junction of the rivers, and it increases with an increase in porosity. The aquifer having T > 5700 m2/day and K > 40 m/day, yields a large quantity of water whereas the portion of an aquifer with T < 1100 m2/day and K < 13 m/day are combatively low yield aquifer. The results of the resistivity method show that the subsurface geological material, as depicted from true resistivity, is composed of layers of sand, clay, and silt mixed with gravel/sand. This study improves the understanding of the aquifer and will help in the development and management of groundwater resources in the area including the prediction of future behavior of the aquifer

    Spatial/Temporal Characterization and Risk Assessment of Trace Metals in Mangla Reservoir, Pakistan

    Get PDF
    Composite water samples were collected from different sites of Mangla reservoir, Pakistan, in premonsoon, monsoon, and postmonsoon seasons. The physicochemical parameters and trace/heavy metals were determined in all water samples. The results manifested significant seasonal variations among Co, Cr, Ni, and Pb and the metals exhibited highest contribution in premonsoon season except Mn. Principal component analysis (PCA) and cluster analysis (CA) revealed considerable anthropogenic intrusions in the reservoir. Probable risk associated with the metals levels on human health was also evaluated using hazard quotients (HQ) by ingestion and dermal routes for adults and children. It was noted that Cd, Co, Cr, Ni, and Pb (HQing>1) were the most important pollutants leading to noncarcinogenic concerns. The HQderm levels of all metals were below unity, suggesting that these metals posed no hazards via dermal absorption, while the oral intake was the major exposure pathway. The largest contributors to chronic risks were Cd, Co, Cr, Ni, and Pb in all the seasons. Therefore, immediate measures should be taken for sustaining the healthy aquatic ecosystem
    corecore