977 research outputs found
On Radar Time and the Twin `Paradox'
In this paper we apply the concept of radar time (popularised by Bondi in his
work on k-calculus) to the well-known relativistic twin `paradox'. Radar time
is used to define hypersurfaces of simultaneity for a class of travelling
twins, from the `Immediate Turn-around' case, through the `Gradual Turn-around'
case, to the `Uniformly Accelerating' case. We show that this definition of
simultaneity is independent of choice of coordinates, and assigns a unique time
to any event (with which the travelling twin can send and receive signals),
resolving some common misconceptions.Comment: 9 pages, 10 figures. Minor changes (includes minor corrections not in
published version
Continuous Time Monte Carlo for Lattice QCD in the Strong Coupling Limit
We present results for lattice QCD in the limit of infinite gauge coupling,
obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice
but with continuous Euclidean time. This is obtained by sending both the
anisotropy parameter gamma^2 \sim a/a_t and the number of time-slices N_\tau to
infinity, keeping the ratio \gamma^2/N_\tau \sim aT fixed. The obvious gain is
that no continuum extrapolation N_\tau -> \infty has to be carried out.
Moreover, the algorithm is faster and the sign problem disappears. We compare
our computations with those on discrete lattices. We determine the phase
diagram as a function of temperature and baryon chemical potential.Comment: 4 pages, Proceedings for Quark Matter 2011 Conference, May 23-28,
2011, Annecy, Franc
Superfluid gap formation in a fermionic optical lattice with spin imbalanced populations
We investigate the attractive Hubbard model in infinite spatial dimensions at
quarter filling. By combining dynamical mean-field theory with continuous-time
quantum Monte Carlo simulations in the Nambu formalism, we directly deal with
the superfluid phase in the population imbalanced system. We discuss the low
energy properties in the polarized superfluid state and the pseudogap behavior
in the vicinity of the critical temperature.Comment: 4 pages, 1 figure, To appear in J. Phys.: Conf. Ser. for SCES201
The 51.8 micron (0 3) line emission observed in four galactic H 2 regions
The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed
opendf - an implementation of the dual fermion method for strongly correlated systems
The dual fermion method is a multiscale approach for solving lattice problems
of interacting strongly correlated systems. In this paper, we present the
\texttt{opendf} code, an open-source implementation of the dual fermion method
applicable to fermionic single-orbital lattice models in dimensions
and . The method is built on a dynamical mean field starting point, which
neglects all local correlations, and perturbatively adds spatial correlations.
Our code is distributed as an open-source package under the GNU public license
version 2.Comment: 7 pages, 6 figures, 28th Annual CSP Workshop proceeding
Thermodynamics of the 3D Hubbard model on approach to the Neel transition
We study the thermodynamic properties of the 3D Hubbard model for
temperatures down to the Neel temperature using cluster dynamical mean-field
theory. In particular we calculate the energy, entropy, density, double
occupancy and nearest-neighbor spin correlations as a function of chemical
potential, temperature and repulsion strength. To make contact with cold-gas
experiments, we also compute properties of the system subject to an external
trap in the local density approximation. We find that an entropy per particle
at is sufficient to achieve a Neel state in the
center of the trap, substantially higher than the entropy required in a
homogeneous system. Precursors to antiferromagnetism can clearly be observed in
nearest-neighbor spin correlators.Comment: 4 pages, 6 figure
Diagrammatic Monte Carlo for Correlated Fermions
We show that Monte Carlo sampling of the Feynman diagrammatic series (DiagMC)
can be used for tackling hard fermionic quantum many-body problems in the
thermodynamic limit by presenting accurate results for the repulsive Hubbard
model in the correlated Fermi liquid regime. Sampling Feynman's diagrammatic
series for the single-particle self-energy we can study moderate values of the
on-site repulsion () and temperatures down to . We
compare our results with high temperature series expansion and with single-site
and cluster dynamical mean-field theory.Comment: 4 pages, 5 figures, stylistic change
- …