6 research outputs found

    Comprehending Performance of Cross-Frames in Skewed Straight Steel I-Girder Bridges

    Get PDF
    The effects of support in steel bridges can present significant challenges during the construction. The tendency of girders to twist or layovers during the construction can present a particularly challenging problem regarding detailing cross-frames that provide bracing to steel girders. Methods of detailing cross-frames have been investigated in the past to identify some of the issues related to the behavior of straight and skewed steel bridges. However, the absence of a complete and simplified design approach has led to disputes between stakeholders, costly repairs and delays in the construction. The main objective of this research is to develop a complete and simplified design approach considering construction, fabrication and detailing of skewed bridges. This objective is achieved by comparing different detailing methods, understanding the mechanism by which skew effects develop in steel bridges, recommending simplified methods of analysis to evaluate them, and developing a complete and simplified design procedure for skew bridges. Girder layovers, flange lateral bending stress, cross-frame forces, component of vertical deflections, component of vertical reactions and lateral reactions or lateral displacements are affected by detailing methods and are referred as lack-of-fit effects. The main conclusion of this research is that lack-of-fit effects for the Final Fit detailing method at the steel dead load stage are equal and opposite to the lack-of-fit effects for the Erected Fit detailing method at the total dead load stage. This conclusion has helped using 2D grid analyses for estimating these lack-of-fit effects for different detailing methods. 3D erection simulations are developed for estimating fit-up forces required to attach the cross-frames to girders. The maximum fit-up force estimated from the 2D grid analysis shows a reasonable agreement with the one obtained from the erection simulations. The erection sequence that reduces the maximum fit-up force is also found by erection simulations. The line girder analysis is recommended for calculating cambers for the Final Fit detailing method. A combination of line girder analysis and 2D grid analysis is recommended for calculating cambers for the Erected Fit detailing method. Finally, flowcharts are developed that facilitate the selection of a detailing method and show the necessary design checks

    Assessment and Evaluation of Timber Piles Used in Nebraska for Retrofit and Rating

    Get PDF

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    Medicinal plants - prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review.

    Get PDF
    BACKGROUND Gastrointestinal and respiratory diseases in calves and piglets lead to significant economic losses in livestock husbandry. A high morbidity has been reported for diarrhea (calves ≤ 35 %; piglets ≤ 50 %) and for respiratory diseases (calves ≤ 80 %; piglets ≤ 40 %). Despite a highly diverse etiology and pathophysiology of these diseases, treatment with antimicrobials is often the first-line therapy. Multi-antimicrobial resistance in pathogens results in international accordance to strengthen the research in novel treatment options. Medicinal plants bear a potential as alternative or additional treatment. Based on the versatile effects of their plant specific multi-component-compositions, medicinal plants can potentially act as 'multi-target drugs'. Regarding the plurality of medicinal plants, the aim of this systematic review was to identify potential medicinal plant species for prevention and treatment of gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation in calves and piglets. RESULTS Based on nine initial sources including standard textbooks and European ethnoveterinary studies, a total of 223 medicinal plant species related to the treatment of gastrointestinal and respiratory diseases was identified. A defined search strategy was established using the PRISMA statement to evaluate 30 medicinal plant species starting from 20'000 peer-reviewed articles published in the last 20 years (1994-2014). This strategy led to 418 references (257 in vitro, 84 in vivo and 77 clinical trials, thereof 48 clinical trials in veterinary medicine) to evaluate effects of medicinal plants and their efficacy in detail. The findings indicate that the most promising candidates for gastrointestinal diseases are Allium sativum L., Mentha x piperita L. and Salvia officinalis L.; for diseases of the respiratory tract Echinacea purpurea (L.) MOENCH, Thymus vulgaris L. and Althea officinalis L. were found most promising, and Echinacea purpurea (L.) MOENCH, Camellia sinensis (L.) KUNTZE, Glycyrrhiza glabra L. and Origanum vulgare L. were identified as best candidates for modulation of the immune system and inflammation. CONCLUSIONS Several medicinal plants bear a potential for novel treatment strategies for young livestock. There is a need for further research focused on gastrointestinal and respiratory diseases in calves and piglets, and the findings of this review provide a basis on plant selection for future studies
    corecore