43 research outputs found

    Vestibular Perception following Acute Unilateral Vestibular Lesions.

    Get PDF
    Little is known about the vestibulo-perceptual (VP) system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO) and VP function in 25 patients with vestibular neuritis (VN) acutely (2 days after onset) and after compensation (recovery phase, 10 weeks). Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2) and velocity steps of 90°/s (acceleration 180°/s(2)). We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of perceptual processes (ultimately cortical) participating in vestibular compensation, suppressing asymmetry acutely in unilateral vestibular lesions

    Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse

    Get PDF
    This study describes cytoarchitectonic criteria to define the prefrontal cortical areas in the mouse brain (C57BL/6 strain). Currently, well-illustrated mouse brain stereotaxic atlases are available, which, however, do not provide a description of the distinctive cytoarchitectonic characteristics of individual prefrontal areas. Such a description is of importance for stereological, neuronal tracing, and physiological, molecular and neuroimaging studies in which a precise parcellation of the prefrontal cortex (PFC) is required. The present study describes and illustrates: the medial prefrontal areas, i.e., the infralimbic, prelimbic, dorsal and ventral anterior cingulate and Fr2 area; areas of the lateral PFC, i.e., the dorsal agranular insular cortical areas and areas of the ventral PFC, i.e., the lateral, ventrolateral, ventral and medial orbital areas. Each cytoarchitectonically defined boundary is corroborated by one or more chemoarchitectonic stainings, i.e., acetylcholine esterase, SMI32, SMI311, dopamine, parvalbumin, calbindin and myelin staining

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems

    Somatosensory modulation of perceptual vestibular detection

    Get PDF
    Vestibular-multisensory interactions are essential for self-motion, navigation and postural stability. Despite evidence suggesting shared brain areas between vestibular and somatosensory inputs, no study has yet investigated whether somatosensory information influences vestibular perception. Here, we used signal detection methods to identify whether somatosensory stimulation might interact with vestibular events in a vestibular detection task. Participants were instructed to detect near-threshold vestibular roll-rotation sensations delivered by galvanic vestibular stimulation in one-half of experimental trials. A vibrotactile signal occurred to the index fingers of both hands in half of the trials, independent of vestibular signals. We found that vibrotactile somatosensory stimulation decreased perceptual vestibular sensitivity. The results are compatible with a gain regulation mechanism between vestibular and somatosensory modalities

    Up, down, near, far: an online vestibular contribution to distance judgement

    Get PDF
    Whether a visual stimulus seems near or far away depends partly on its vertical elevation. Contrasting theories suggest either that perception of distance could vary with elevation, because of memory of previous upwards efforts in climbing to overcome gravity, or because of fear of falling associated with the downwards direction. The vestibular system provides a fundamental signal for the downward direction of gravity, but the relation between this signal and depth perception remains unexplored. Here we report an experiment on vestibular contributions to depth perception, using Virtual Reality. We asked participants to judge the absolute distance of an object presented on a plane at different elevations during brief artificial vestibular inputs. Relative to distance estimates collected with the object at the level of horizon, participants tended to overestimate distances when the object was presented above the level of horizon and the head was tilted upward and underestimate them when the object was presented below the level of horizon. Interestingly, adding artificial vestibular inputs strengthened these distance biases, showing that online multisensory signals, and not only stored information, contribute to such distance illusions. Our results support the gravity theory of depth perception, and show that vestibular signals make an on-line contribution to the perception of effort, and thus of distance
    corecore