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Abstract 43 

Whether a visual stimulus seems near or far away depends partly on its vertical elevation.  44 

Contrasting theories suggest either that perception of distance could vary with elevation, because of 45 

memory of previous upwards efforts in climbing to overcome gravity, or because of fear of falling 46 

associated with the downwards direction.  The vestibular system provides a fundamental signal for 47 

the downward direction of gravity, but the relation between this signal and depth perception remains 48 

unexplored.  Here we report an experiment on vestibular contributions to depth perception, using 49 

Virtual Reality.  We asked participants to judge the absolute distance of an object presented on a 50 

plane at different elevations during brief artificial vestibular inputs.  Relative to distance estimates 51 

collected with the object at the level of horizon, participants tended to overestimate distances when 52 

the object was presented above the level of horizon and the head was tilted upward and underestimate 53 

them when the object was presented below the level of horizon.  Interestingly, adding artificial 54 

vestibular inputs strengthened these distance biases, showing that online multisensory signals, and 55 

not only stored information, contribute to such distance illusions.  Our results support the gravity 56 

theory of depth perception, and show that vestibular signals make an on-line contribution to the 57 

perception of effort, and thus of distance. 58 

  59 
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1. Introduction 60 

Perceiving how far away an object is from one’s own body is essential for interacting with the 61 

environment.  Distance can be inferred directly from visual information, using accommodation (1) 62 

and binocular cues such as vergence (2) and disparity (3).  However, distance perception is 63 

dramatically biased if the target objects are presented above or below the level of horizon.  For 64 

example, a mountain refuge seems farther or closer depending on whether we look up at it from below 65 

or down at it from above (4).  Hence, purely visual information about distance may be affected by 66 

non-visual factors (5,6), such as fear of heights (4) or perceived effort of access (7). 67 

Contrasting explanations have been proposed for non-visual distance biases.  On the one hand, 68 

the gravity theory claims that distance perception is based on the estimated motor effort of navigating 69 

to the perceived object (7,8).  Accordingly upward distances are overestimated (9).  On the other 70 

hand, the evolved navigation theory posits an evolutionary advantage in overestimating the risk of 71 

falling (10,11).  On this view, contrary to gravity theory, downward distances are overestimated.  Both 72 

theories assume that current head and gaze elevations are combined with internally-stored 73 

information in order to compute distance.  Gravity theories require stored information about previous 74 

motor efforts (8), while evolved navigation theories require internal information about potential risks 75 

of falling (12).  Critically, removing the fear of falling by experimenting in low detail Virtual Reality 76 

(13) or reducing the expected effort of access by e.g. not wearing any heavy backpacks (9) reportedly 77 

diminishes these elevation distance biases. 78 

In principle, the influence of upward/downward head inclination on distance perception could 79 

be based on online information, rather than stored information.  In particular, under terrestrial 80 

conditions, the vestibular system constantly provides signals relating current head orientation to the 81 

direction of gravity.  Combining a vestibular signal with an eye position signal specifies whether a 82 

visual object is located above or below the eye.  Although vestibular signals do not directly code the 83 

spatial location of external objects, the interaction between vestibular and visual information is 84 

essential in providing the organism with space representation (14–16).  For instance, vestibular 85 
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peripheral organs detect the motion of the head, producing experiences of self-motion in three-86 

dimensional space.  Cortical vestibular pathways integrate information from other sensory modalities 87 

to generate appropriate and accurate responses to self-motion, such as the stabilization of gaze, 88 

balance and postural motor commands (17), and the perception of the subjective visual vertical (18).  89 

Microgravity experiments showed that visual perception of horizontal depth is influenced by altered 90 

vestibular signals (19).  For example, perceived distances were underestimated during either short-91 

term exposure to microgravity using parabolic flight (20) or long term exposure on the International 92 

Space Station (21) leading to perceptual distortions of three dimensional space.  However, the 93 

vestibular contribution to elevation biases in visual depth perception remains under-investigated. 94 

 Recent studies indicated that reaching an object can be affected by the posture of the body (6).  95 

Tilting the body forward caused errors in the reaching movement, because participants 96 

underestimated the distance between their own body and the virtual object.  These results seem to 97 

support the gravity based model.  Similarly, Harris and Mander (5) reported that tilting the body 98 

backward caused overestimation of the perceived length of a rod, and hence, the wall seemed 99 

presumably closer.  However, these studies do not specify under which circumstances one expects 100 

underestimation vs. overestimation, and why. 101 

Here we asked participants to judge the distance of an object presented at different distances on 102 

an inclined plane, leading to different head and gaze elevations.  We developed a novel Virtual Reality 103 

environment in which neither risks of falling (22), nor navigational effort were actually present (23).  104 

This minimised confounds such as familiarity, and memory for previous efforts, that could affect 105 

previous field-based experiments.  The participants’ head inclination was systematically varied by 106 

asking them to tilt both the head and gaze upwards or downwards to fixate a target object.  We could 107 

thus directly compare predictions of gravity and evolved navigation theories.  Further, we applied 108 

event-related galvanic vestibular stimulation (GVS) during each judgement, to investigate whether 109 

online vestibular signals indeed affected the distance perception biases.  Importantly, GVS is a non-110 

invasive method that directly stimulates the vestibular receptors (24), producing complex oculomotor, 111 
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perceptual and postural responses.  In the traditional bilateral bipolar GVS configuration, an anode 112 

and cathode are placed on the left and right mastoid, or vice versa.  Perilymphatic cathodal currents 113 

are thought to depolarize the trigger site and lead to excitation, whereas anodal currents hyperpolarize 114 

it resulting in inhibition (25). This is considered to enhance the vestibular activity by mimicking a 115 

natural movement of the head, which elicits a virtual sensation of roll tilt. 116 

 117 

2. Methods 118 

2.1. Ethics Statement 119 

The experimental protocol was approved by the local ethics committee (University College 120 

London) and the study was conducted in line with the Declaration of Helsinki.  Participants gave 121 

written informed consent to participate in the experiment before inclusion in the experiment. 122 

 123 

2.2. Participants 124 

 Sixteen healthy participants volunteered for the study.  Data from two participants was 125 

discarded because they proved unable to follow the instruction of the experiment (see below).  Thus, 126 

fourteen participants (5 females, mean age ± standard deviation: 26.64 ± 6.64 years) completed the 127 

experiment.  All participants were right-handed according to their Edinburgh handedness inventory 128 

scores.  The sample size was decided a priori based on similar experiments (5,6). 129 

 130 

2.3. Galvanic Vestibular Stimulation 131 

 Bipolar galvanic vestibular stimulation (GVS) was applied using a commercial stimulator 132 

(Good Vibrations Engineering Ltd., Nobleton, Ontario, Canada) delivering a boxcar pulse of 1mA 133 

for 3s.  This low intensity was used to minimise non-specific cueing effects, such as arousal from 134 
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cutaneous sensations or vertigo.  Importantly, several studies confirm that this level of GVS activates 135 

the vestibular organs.  For instance, both postural (24) and behavioural changes have been reported 136 

with such low intensities GVS (26–30).  GVS is known to increase the firing rate in vestibular 137 

afferents on the cathodal side and to decrease the firing rate on the anodal side (25), enhancing the 138 

ongoing natural vestibular responses and evoking virtual sensations of roll tilt.  These effects do not 139 

outlast the stimulation (31).  Carbon rubber electrodes (area 10 cm2) coated with electrode gel were 140 

placed binaurally over the mastoid processes and fixed in place with adhesive tape.  The area of 141 

application was first cleaned, and electrode gel was applied to reduce the impedance.  Left anodal 142 

and right cathodal configuration is named ‘L-GVS’ (Figure 1b).  The inverse polarity, namely right 143 

anodal and left cathodal configuration, is named ‘R-GVS’.  We also applied a sham stimulation using 144 

electrodes placed on the left and right side of the neck, about 5cm below the GVS electrodes (32,33) 145 

with left anodal and right cathodal configuration.  This sham stimulation evoked similar tingling skin 146 

sensations to GVS but not modulation of vestibular afferents.  It thus provided a control for non-147 

specific alerting effects and for the knowledge that an unusual stimulation is occurring. 148 

 149 

2.4. Virtual Reality Environment 150 

 The experiment was carried out in the Immersive Virtual Reality Laboratory at University 151 

College London, using a CAVE facility (34).  This system consists of four stereo-projected surfaces: 152 

three back-projected vertical walls, each 3m wide x 2.2m high, and the floor (3m x 3m) form a 153 

continuous projection surface.  The Virtual Reality environment was created using Unity3D game 154 

engine (www.unity3d.com), rendered using a K5000 graphics card to drive 4 Christie Mirage DLP 155 

projectors, each of which projected to one of the 4 screens at 96Hz.  The participant wore shutter 156 

glasses synchronized with the projectors creating active stereo-projection in each eye at 48Hz.  The 157 

glasses provided a field of view per eye of approx. 90-100° horizontally and 60-70° vertically (the 158 

precise field of view depends to some extent on how closely the glasses fitted to the participant’s 159 

eyes).  The position of the glasses was tracked by an InterSense™ IS-900 system with high accuracy.  160 
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The system was calibrated to the participant’s own eye height at the beginning of every experiment, 161 

and this data was used to accurately compute object distances for the upward, downward, and level 162 

inclinations.  This calibration was performed to account for small changes in eye-to-ground distance 163 

among participants.  A geometrical model accounting for the pitch of the ground plane and the eye-164 

height of the participant ensured that the distance from the participant's eye to the near-top edge of 165 

the target object was identical for both upward and downward pitched objects (as well as among 166 

participants with different eye-heights).  The virtual scene was a green grass-like plane with blue 167 

skies and no visible landmarks.  The experimental object was a 2m X 2m gift box with purple ribbon 168 

(see Figure 1a).  The object rested on the ground and the same proportion of object and environment 169 

was visible at all inclinations.  The unusual size of the target object was chosen to be appropriate for 170 

the range of distances presented in the experiment and the consequent visual angle subtended by the 171 

target object at these distances.  As the distance was varied between 5m and 25m, and the object had 172 

2m sides, the visual angle subtended varied between 23° and 4.6°.   173 

 174 

2.5. Experimental procedure 175 

 Verbal and written instructions about the task were given to participants prior to the 176 

experiment.  Participants were seated in the centre of the CAVE, 1.5m from the front screen.  A visual 177 

scene was presented on vertical screens and on the floor in order to create a seamless, wide field-of-178 

view immersive display.  Participants made absolute judgements about the distance between their 179 

own body and an object (a gift box) that appeared in front of them (29, see Figure 1a).  At the 180 

beginning of the task, the target object was displayed for few minutes to allow participants to 181 

familiarise with its size.  Then object positions slightly under (1.5m) and slightly over (30m) the 182 

experimental range were presented, and the experimenter informed the participant about the actual 183 

distance in metres.  184 

Participants were encouraged to use these as anchor points to calibrate distance judgements 185 

in experimental trials.  The positions of the present box were distributed logarithmically between 5m 186 
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and 25m; thus, the possible distances were 5, 6.9, 9.52, 13.3, 18.2, 25m.  These distances were chosen 187 

to produce a wide range of perceived distances.  Our predictions did not focus on the effects of object 188 

distance itself but rather on the effects of two other experimental factors: head inclination and 189 

vestibular stimulation.  Participants were instructed to look horizontally relative to the head and visual 190 

ground plane, but the angle of the head was manipulated across experimental conditions.  The object 191 

appeared on a smooth plane that was inclining (+20°), flat (0°), or declining (-20°), and participants 192 

were asked to tilt their head accordingly (backwards, natural and downwards).  The experiment was 193 

divided into blocks; head inclination (+20°, 0°, -20°) and vestibular stimulation (L-GVS, R-GVS, 194 

Sham) changed only between blocks.  Each block consisted of 18 trials; there were three repetitions 195 

of the same distance in each block.  Distances were presented in random order.  Block order followed 196 

a Latin square design.  Each trial started with the presentation of the grass-like plane in the actual 197 

inclination and the blue sky.  Participants adjusted their head pitch angle to fixate the object and, 198 

therefore, the horizon, while a 6 degrees head tracking system monitored their posture.  This 199 

procedure ensured that participants saw the same proportion of grass and sky at all head inclinations.  200 

The head tracking system measured the inclination of the head and a sound signalled when the 201 

participant’s head reached the correct vertical angle.  Thus, the head position in space was decoded 202 

by our custom-built software for presenting stimuli, which started each trial if and only if participants’ 203 

head was in the correct inclination.  Participants were told to keep their head at the same position for 204 

the duration of the block.  Then GVS/Sham started and lasted for 3s.  1s after GVS onset, the gift box 205 

became visible for 1s and then disappeared.  This delay was used to ensure that vestibular cortical 206 

projections would be activated when visual stimulus was present: Fitzpatrick and Day (24) reported 207 

that 1s of 1mA GVS produced clear postural adjustments in standing participants, implying successful 208 

activation of the vestibular system.  The image was then blurred, and the GVS/Sham pulse ended.  209 

Participants made absolute verbal judgements (in metres) of the distance of the object after the screen 210 

was blurred.  The response was recorded, and the next trial started.  This method of reporting distance 211 

percepts has high face validity, and allows many estimates to be acquired rapidly.  It was thus 212 
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preferred to the method of limits and method of constant stimuli favoured in classical psychophysical 213 

studies.  Very importantly, any imprecision or bias resulting from this method of measurement should 214 

affect all GVS conditions equally.  We did not aim to quantify the limits of visual distance perception, 215 

but only to compare estimates of perceived visual distance between GVS conditions.  We wanted to 216 

sample a range of environmental distances to minimise the number of GVS stimulations (GVS can 217 

cause mildly unpleasant sensations) and to minimise duration of the CAVE immersion.  Absolute 218 

judgements might be criticised because different participants may use different subjective standards.  219 

However, our experimental design was based only on within-participant comparisons; therefore, 220 

differences between individuals in reported values do not affect our inferences. 221 

 222 

*** Insert Figure 1 Here *** 223 

 224 

Figure 1.  Experimental set up and results. (a) Participants were seated in the centre of the cave.  225 
During the experiment, participants made absolute judgements of the distance between their own 226 
body and an object (a gift box) appearing in front of them.  The positions of the gift box were 227 
distributed logarithmically between 5m and 25m.  The same distances were presented with the three 228 
head inclinations -20°, 0°, and +20°.  The gaze was aligned with head inclinations.  (b) Left anodal 229 
and right cathodal configuration is named ‘L-GVS’.  The inverse polarity, namely right anodal and 230 
left cathodal configuration, is named ‘R-GVS’.  A sham stimulation was also applied placing the 231 
electrodes to the left and right side of the neck about 5cm below the GVS electrodes.  GVS and sham 232 
stimulation were applied delivering a boxcar pulse of 1ma for 3s. (c) Distance errors have been 233 
calculated by subtracting the actual distance from the judged distance.  Estimation bias in 0° head 234 
inclination condition was used as baseline, and all values were corrected by this baseline.  Thus, 235 
negative values on the ordinate indicate underestimation compared to the horizontal, zero-inclination 236 
baseline condition, whereas positive values indicate overestimations.  Distance perception varied 237 
significantly according head inclination.  Specifically, downward distances were underestimated, 238 
while upward distances were overestimated, relative to baseline.  This pattern of distance illusions is 239 
in line with the predictions of the gravity theories.  Note that GVS enhances this pattern. (d) 240 
Predictions based on linear mixed-effects model.  The model containing both fixed and random terms 241 
fits well to the actual data.  242 

 243 

 244 

3. Results 245 

 Trials containing either recording errors or multiple responses were eliminated before the 246 

analysis.  Less than one percent of all participants’ data was removed according to this criterion.  We 247 
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calculated the distance judgement errors by subtracting the simulated distance from the judged 248 

distance.  We inspected the distribution of errors expressed both in metres, and as a percentage of the 249 

actual distance.  The former distribution was normal, whereas the latter was left-skewed.  We 250 

therefore preferred to express errors in physical units (m). The distance bias in the 0° head inclination 251 

condition, corresponding to horizontal gaze, was been considered as baseline, which allowed us to 252 

define underestimation (negative values) and overestimation (positive values) relative to it.   253 

 254 

 First, distance judgement errors for each participant were averaged for each combination of 255 

head inclination and vestibular stimulation conditions and analysed using factorial repeated measures 256 

ANOVA and planned contrasts.  Our theoretical predictions focused on the interaction between head 257 

inclination and vestibular stimulation factors.  These analyses therefore pooled across the different 258 

distances judged.  Distance perception varied significantly across head inclinations (F(2,26) = 23.694; 259 

p < .001; ηp
2 = 0.65) (Figure 1c).  Overall estimations showed a slight underestimation trend, but only 260 

estimations in the -20° head inclination condition were significantly underestimated compared to 261 

actual distances (t(13) = -2.75, p = .02, Cohen’s d = -1.52, all other p> .3).  Downward distances were 262 

underestimated by 1.65m (SD = 3.50), while upward distances were overestimated by 1.19m (SD = 263 

3.90), compared to ground level.  This pattern of results fits the predictions of gravity theories but 264 

opposes the predictions of evolved navigation theories.  A planned linear trend contrast confined to 265 

the sham condition also showed a trend in the direction predicted by gravity theories (down vs. up 266 

head inclination t(1,13) = 1.670; p = .059, Cohen’s d = 0.45, one-tailed, numerical effect present in 267 

10/14 participants).  The corresponding planned contrast for evolved navigation was not supported 268 

(flat vs down head inclination: t(1,13) = -1.274, n.s.).  The main effect of vestibular stimulation was 269 

not significant (F(2,26) = 0.196; p = .823).  However, and more importantly, we found an interaction 270 

between vestibular stimulation condition and head inclination (F(4,52) = 3.318; p = .017; ηp
2 = 0.20).  271 

This interaction occurred because the linear trend predicted by gravity theories was amplified by both 272 

polarities of GVS (down vs. up head inclination L-GVS t(1,13) = 4.891, p < .001, Cohen’s d = 1.31; 273 
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R-GVS t(1,13) = 6.585, p < .001, Cohen’s d = 1.76, numerical effect averaged across GVS polarities 274 

present in 14/14 participants).  This pattern of results is consistent with an inclination effect generated 275 

online by a vestibular signal that is boosted by artificial vestibular stimulation.  276 

 277 

 Second, we fitted a mixed effects model to investigate intersubject variability, following Barr 278 

et al (36).  In this mixed effects approach, we entered head inclination (-20°, 0°, 20°) and object 279 

position as scalar variables (37), while vestibular stimulation (L-GVS, R-GVS, Sham) was handled 280 

as factorial.  Mixed effects modelling was performed in R (38) using lme4 (37); ggplot2 was adopted 281 

for visualisation (39).  282 

We inspected how distance judgement errors varied as a function of object position for each 283 

participant (Figure 2).  We observed a strong correlation between object distance and judgement error 284 

within most participants, together with strong differences between participants in the strength and 285 

even the sign of these correlations. This pattern of variation justifies the explicit modelling of both 286 

fixed and random effects provided by the mixed model approach (36).  We included both fixed (i.e. 287 

population general) and random (i.e. subject specific) effects of head inclination, object position and 288 

vestibular stimulation (37,40). We aimed to keep maximal random effect structure in the model (36), 289 

therefore random intercepts were estimated for individual subjects, individual subject and vestibular 290 

stimulation combinations, individual subject and inclination combinations, and individual subject, 291 

vestibular stimulation and inclination combinations. Random slope is only estimated for the object 292 

position, but separate random slopes (correlated with their respective intercepts) were estimated for 293 

different random intercept terms. For this model the restricted maximum likelihood (RMEL) 294 

estimation reached convergence. This model appeared to fit our data well according to the Akaike 295 

Information Criteria (AIC) of 3243.747 (df = 31, baseline model containing no fixed effects, and only 296 

the subjects as random effects resulted in AIC 5211.152).  The fixed effect significances were tested 297 

using F tests, where p values were based on the Kenward-Roger approximation of the degrees of 298 

freedom (42).  We found a significant main effect of head inclination (F(2, 26.17) = 23.70, p < .001, 299 
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ηp
2 = 0.64) and a main effect of object position (F(1, 19.87) = 41.75, p < .001, ηp

2 = 0.68).  Critically, 300 

the interaction between head inclination and vestibular stimulation was significant (F(4, 52.92) = 301 

3.68, p = .010, ηp
2 = 0.22).  The pattern of interaction was consistent with an involvement of vestibular 302 

gravitational signals in distance estimates, with the effects of actual distance on reported distance 303 

being greater with GVS than in Sham.  Least square means post hoc contrasts revealed significant 304 

differences between -20° and 20° head inclination conditions in the Sham (p = .035). Finally, the 305 

three way interaction between head inclination, vestibular stimulation, and object position was also 306 

significant (F(4, 67.56) = 39.10, p < .001, ηp
2 = 0.70), primarily due to changes in slopes estimated 307 

for some head inclination and vestibular stimulation combinations.  The overall model explained 308 

more than 80 % of total variance in the data (Conditional R2 = 0.82) with a compelling contribution 309 

of the fixed effects (Marginal R2 = 0.23) (Figure 1d).  The difference between conditional and 310 

marginal R2 indicates how much variance is present on the subject level and captured by the random 311 

effects in our model.  This suggests that our mixed effects model fitted well with the observed data, 312 

and validated hierarchical modelling of the experimental variable. 313 

 314 

To summarise, the ANOVA and the mixed effects model showed converging results.  315 

Downward distances were underestimated, whereas upward distances were overestimated compared 316 

to estimations made on flat surface.  Furthermore, GVS enhanced these biases.   317 

 318 

*** Insert Figure 2 Here *** 319 

 320 

Figure 2.  Relation between object position and judgement error in individual participants.  See 321 
text for explanation.  Note that the size and even direction of the relation differs between participants. 322 

 323 

 324 

4. Discussion 325 
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Participants overestimated visual distances when their head was tilted upward and 326 

underestimated them when their head was tilted downward, compared to judgements made in a zero-327 

degree, horizontal baseline condition.   The observed effect is in the direction predicted by gravity 328 

theories, but opposite to the predictions of evolved navigation theories.  More strikingly, the distance 329 

biases increased strongly with event-related GVS.  Our results suggest that the gravitational 330 

modulation of visual distance perception depends on on-line vestibular signals.  This elevation 331 

distance bias is, therefore, not merely a product of learned contextual associations but rather reflects 332 

a specific multisensory integration mechanism. 333 

Gravitational signals are coded by vestibular receptors in the inner ear, whose signal depends 334 

on the position of the head relative to gravitational vertical (43,44).  The precise mode of action of 335 

GVS remains debated, but recent evidence confirms activation of both otolithic fibres and 336 

semicircular canals (45).  In the bilateral bipolar GVS configuration, perilymphatic cathodal currents 337 

are thought to depolarize the trigger site and lead to excitation, whereas anodal currents hyperpolarize 338 

it resulting in inhibition (25).  Neuroimaging studies using GVS have revealed widespread vestibular 339 

projections reaching many areas of the cerebral cortex, such as the retroinsular cortex, the superior 340 

temporal gyrus, the temporo-parietal cortex, the basal ganglia and the anterior cingulate (46,47). 341 

Critically, recent studies suggested that otolithic gravitational inputs in the vestibular system have a 342 

direct influence on cognitive tasks involving three-dimensional perception (5,6,14,15).  In particular, 343 

perception of depth was altered in microgravity and in peripheral vestibular disorders (15,48).  344 

However, these results were attributed to changes in visual linear perspective and visual size 345 

perception, which should be specific to visual horizontal stimuli.  Our data suggest an alternative 346 

mechanism for these effects.  We found that artificial activation of vestibular projections in the brain 347 

by GVS modulated distance illusions.  The pattern of modulation suggests that GVS amplified the 348 

neural signals generated by head and gaze elevation changes required to fixate targets above or below 349 

the ground plane (49,50).  Our results therefore suggest that vestibular inputs contribute to an on-line 350 

representation of head movement and position which is used in estimation of visual distance. 351 
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Gaze position and the perceived orientation of the ground plane are already known to 352 

contribute to perceived depth (50,51).  Critically, these factors both depend on head position, 353 

suggesting a fundamental interaction between visual, vestibular and proprioceptive signals in 354 

computing distance estimates.  Combining traditional visual cues to depth, such as accommodation 355 

and vergence, with vestibular signals about current head position relative to gravity provides 356 

sufficient information to compute a possible motion path to a visual object (17), as suggested by 357 

navigation theories.  In our study, participants overestimated distances when their head was tilted 358 

upward and underestimated them when their head was tilted downward compared to estimates in the 359 

horizontal plane.  This distance perceptual bias was enhanced with event-related GVS.  Interestingly, 360 

GVS did not interfere with distance perception when head inclination was zero. Presumably, when 361 

the head is level and not inclined, the brain computes distances to visual targets with respect to an 362 

assumed level ground.  This represents an intermediate, neutral situation where there is neither cost 363 

nor benefit of gravity (cf (7,8,52)). In this special case, the online vestibular-gravitational signal 364 

generated by GVS does not need to be integrated. 365 

Importantly, although the current results supported the predictions of the gravity theory, we 366 

do not suggest a globally linear relation between head inclination and distance error.  In fact, not all 367 

possible angles are equally experienced in real environments (9,53). Our experience of inclines 368 

typically involves either slight elevations (e.g. road gradients are usually under 20 degrees) or risky, 369 

non-navigable surfaces (e.g. the sheer drop from a balcony).  One might expect the biases of evolved 370 

navigation theory to be most apparent for dramatic elevation angles associated with dangerous 371 

environments. 372 

Verbal reporting of absolute distance judgements was used in the present study.  This does 373 

not figure among the classical psychophysical methods.  However, it has been used earlier (54,55). 374 

The results of those studies were broadly similar to others that used other measures to assess distance 375 

estimation (56–58). The verbal method has the advantage of being extremely rapid.  This is important 376 

in environments such as VR, where long exposure is uncomfortable and impractical. Although 377 
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absolute response accuracy may be low, this need not obscure the difference between our 378 

experimental conditions (59–62).  Thus, it seems very unlikely that the particular features of this 379 

psychophysical judgement can explain our results, unless additional and unwarranted ad hoc 380 

assumptions are made.  381 

We cannot exclude that the difference between estimated distances and actual distances might 382 

have been influenced by some parameters used in our study.  For instance, visual distance perception 383 

seems to rely on the familiar size of the to-be-estimated object (63).  We adopted an unusual large 384 

box to account for the visual angles subtended by the object at far distances.  A large object is 385 

therefore required to avoid further uncertainty in the distance judgments, especially at greater 386 

distances.  The size of our box might have affected distance perception in general, but not specifically 387 

at some head inclinations or vestibular stimulation conditions.   388 

Previous accounts of visual distance perception identified a gravitational bias.  Some views 389 

treat these as top-down, cognitive biases, which may therefore be post-perceptual.  For example, the 390 

perceived effort to climb to overcome gravity may lead to the summit of a slope seeming far away  391 

(53).  In our experiment these cognitive factors were minimized: in VR there is no actual effort of 392 

movement, nor any fear of falling.  Our results suggest that upward slope visual distances are 393 

overestimated compared to ground level, and we provide novel, causal evidence of why this might be 394 

so.  We show that gravitational modulation of visual distance perception depends on on-line vestibular 395 

signals.  Previous accounts emphasised memory of past experiences of efforts to overcome gravity, 396 

or potential effects of gravity in falling.  That is, those accounts treated vertical biases in distance 397 

perception as results of prior learning, or as predictions, rather than as on-line modulations of 398 

perception.  Since concurrent, event-related artificial vestibular inputs boosted visual distance 399 

illusions, these illusions may not simply be products of learned and internally-stored contextual 400 

associations.  Rather, such illusions may owe more to multisensory perceptual integration than has 401 

been previously thought. 402 

  403 
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