220 research outputs found
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor
Using optical Ramsey interferometry, we precisely measure the laser-induced
AC-stark shift on the -- "quantum bit" transition near 729
nm in a single trapped Ca ion. We cancel this shift using an
additional laser field. This technique is of particular importance for the
implementation of quantum information processing with cold trapped ions. As a
simple application we measure the atomic phase evolution during a rotation of the quantum bit.Comment: 4 pages, 4 figure
Quantum interference from remotely trapped ions
We observe quantum interference of photons emitted by two continuously
laser-excited single ions, independently trapped in distinct vacuum vessels.
High contrast two-photon interference is observed in two experiments with
different ion species, calcium and barium. Our experimental findings are
quantitatively reproduced by Bloch equation calculations. In particular, we
show that the coherence of the individual resonance fluorescence light field is
determined from the observed interference
Coupling a single atomic quantum bit to a high finesse optical cavity
The quadrupole S -- D optical transition of a single trapped
Ca ion, well suited for encoding a quantum bit of information, is
coherently coupled to the standing wave field of a high finesse cavity. The
coupling is verified by observing the ion's response to both spatial and
temporal variations of the intracavity field. We also achieve deterministic
coupling of the cavity mode to the ion's vibrational state by selectively
exciting vibrational state-changing transitions and by controlling the position
of the ion in the standing wave field with nanometer-precision
Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps
We investigate single ions of in Paul traps for quantum
information processing. Superpositions of the S electronic ground state
and the metastable D state are used to implement a qubit. Laser light
on the S D transition is used for the
manipulation of the ion's quantum state. We apply sideband cooling to the ion
and reach the ground state of vibration with up to 99.9% probability. Starting
from this Fock state , we demonstrate coherent quantum state
manipulation. A large number of Rabi oscillations and a ms-coherence time is
observed. Motional heating is measured to be as low as one vibrational quantum
in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special
Issue on Quantum Optics: Kuehtai 200
Feedback-Optimized Operations with Linear Ion Crystals
We report on transport operations with linear crystals of 40Ca+ ions by
applying complex electric time-dependent potentials. For their control we use
the information obtained from the ions' fluorescence. We demonstrate that by
means of this feedback technique, we can transport a predefined number of ions
and also split and unify ion crystals. The feedback control allows for a robust
scheme, compensating for experimental errors as it does not rely on a precisely
known electrical modeling of the electric potentials in the ion trap
beforehand. Our method allows us to generate a self-learning voltage ramp for
the required process. With an experimental demonstration of a transport with
more than 99.8 % success probability, this technique may facilitate the
operation of a future ion based quantum processor
Laser ablation loading of a surface-electrode ion trap
We demonstrate loading by laser ablation of Sr ions into a
mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed,
frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5
ns. An additional laser is not required to photoionize the ablated material.
The efficiency and lifetime of several candidate materials for the laser
ablation target are characterized by measuring the trapped ion fluorescence
signal for a number of consecutive loads. Additionally, laser ablation is used
to load traps with a trap depth (40 meV) below where electron impact ionization
loading is typically successful ( 500 meV).Comment: 4 pages, 4 figure
Protein Kinase CK2 Contributes to Glucose Homeostasis by Targeting Fructose-1,6-Bisphosphatase 1
Glucose homeostasis is of critical importance for the survival of organisms. It is under hormonal control and often coordinated by the action of kinases and phosphatases. We have previously
shown that CK2 regulates insulin production and secretion in pancreatic β-cells. In order to shed more
light on the CK2-regulated network of glucose homeostasis, in the present study, a qRT-PCR array was
carried out with 84 diabetes-associated genes. After inhibition of CK2, fructose-1,6-bisphosphatase 1
(FBP1) showed a significant lower gene expression. Moreover, FBP1 activity was down-regulated.
Being a central enzyme of gluconeogenesis, the secretion of glucose was decreased as well. Thus,
FBP1 is a new factor in the CK2-regulated network implicated in carbohydrate metabolism control
- …