345 research outputs found

    Accumulation of NKT cells in tissues of cystic fibrosis mice

    Get PDF

    Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression

    Get PDF
    Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase–dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to β1 integrin ligation or αCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics

    Postoperative peri-axillary seroma following axillary artery cannulation for surgical treatment of acute type A aortic dissection

    Get PDF
    The arterial cannulation site for optimal tissue perfusion and cerebral protection during cardiopulmonary bypass (CPB) for surgical treatment of acute type A aortic dissection remains controversial. Right axillary artery cannulation confers significant advantages, because it provides antegrade arterial perfusion during cardiopulmonary bypass, and allows continuous antegrade cerebral perfusion during hypothermic circulatory arrest, thereby minimizing global cerebral ischemia. However, right axillary artery cannulation has been associated with serious complications, including problems with systemic perfusion during cardiopulmonary bypass, problems with postoperative patency of the artery due to stenosis, thrombosis or dissection, and brachial plexus injury. We herein present the case of a 36-year-old Caucasian man with known Marfan syndrome and acute type A aortic dissection, who had direct right axillary artery cannulation for surgery of the ascending aorta. Postoperatively, the patient developed an axillary perigraft seroma. As this complication has, not, to our knowledge, been reported before in cardiothoracic surgery, we describe this unusual complication and discuss conservative and surgical treatment options

    Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Get PDF
    BACKGROUND: Type I interferon (IFN-I) predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-alpha). IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-alpha-treatment occur independently of neutropenia. METHODS: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV). Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar(-/-) mice under the influence of LCMV or poly(I:C). RESULTS: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C)-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. CONCLUSION: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed

    Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus Formation

    Get PDF
    Objective-Platelet activation is essential for primary hemostasis and acute thrombotic vascular occlusions. On activation, platelets release their prothrombotic granules and expose phosphatidylserine, thus fostering thrombin generation and thrombus formation. In other cell types, both degranulation and phosphatidylserine exposure are modified by sphingomyelinase-dependent formation of ceramide. The present study thus explored whether acid sphingomyelinase participates in the regulation of platelet secretion, phosphatidylserine exposure, and thrombus formation. Approach and Results-Collagen-related peptide-induced or thrombin-induced ATP release and P-selectin exposure were significantly blunted in platelets from Asm-deficient mice (Smpd1(-/-)) when compared with platelets from wild-type mice (Smpd1(+/+)). Moreover, phosphatidylserine exposure and thrombin generation were significantly less pronounced in Smpd1(-/-) platelets than in Smpd1(+/+) platelets. In contrast, platelet integrin alpha(IIb)beta(3) activation and aggregation, as well as activation-dependent Ca2+ flux, were not significantly different between Smpd1(-/-) and Smpd1(+/+) platelets. In vitro thrombus formation at shear rates of 1700 s(-1) and in vivo thrombus formation after FeCl3 injury were significantly blunted in Smpd1(-/-) mice while bleeding time was unaffected. Asm-deficient platelets showed significantly reduced activation-dependent ceramide formation, whereas exogenous ceramide rescued diminished platelet secretion and thrombus formation caused by Asm deficiency. Treatment of Smpd1(+/+) platelets with bacterial sphingomyelinase (0.01 U/mL) increased, whereas treatment with functional acid sphingomyelinase-inhibitors, amitriptyline or fluoxetine (5 mu mol/L), blunted activation-dependent platelet degranulation, phosphatidylserine exposure, and thrombus formation. Impaired degranulation and thrombus formation of Smpd1(-/-) platelets were again overcome by exogenous bacterial sphingomyelinase. Conclusions-Acid sphingomyelinase is a completely novel element in the regulation of platelet plasma membrane properties, secretion, and thrombus formation

    Endothelial Membrane Remodeling Is Obligate for Anti-Angiogenic Radiosensitization during Tumor Radiosurgery

    Get PDF
    While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C(16)-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase(+/+) mice or asmase(-/-) littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase(-/-) mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect.These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials

    Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis

    Get PDF
    Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking—but not forced alcohol exposure—reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-016-1658-6) contains supplementary material, which is available to authorized users

    The Targeting of Plasmalemmal Ceramide to Mitochondria during Apoptosis

    Get PDF
    Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1—a member of a family of Ca2+ and membrane-binding proteins—to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this “kiss-of-death” increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis
    • …
    corecore