27 research outputs found

    Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation

    Get PDF
    The morphogenetic remodelling of embryo architecture after implantation culminates in pro-amniotic cavity formation. Despite its key importance, how this transformation occurs remains unknown. Here, we apply high-resolution imaging of embryos developing in vivo and in vitro, spatial RNA sequencing and 3D trophoblast stem cell models to determine the sequence and mechanisms of these remodelling events. We show that cavitation of the embryonic tissue is followed by folding of extra-embryonic tissue to mediate the formation of a second extra-embryonic cavity. Concomitantly, at the boundary between embryonic and extra-embryonic tissues, a hybrid 3D rosette forms. Resolution of this rosette enables the embryonic cavity to invade the extra-embryonic tissue. Subsequently, β1-integrin signalling mediates the formation of multiple extra-embryonic 3D rosettes. Podocalyxin exocytosis leads to their polarized resolution, permitting the extension of embryonic and extra-embryonic cavities and their fusion into a unified pro-amniotic cavity. These morphogenetic transformations of embryogenesis reveal a previously unappreciated mechanism for lumen expansion and fusion

    Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation

    Get PDF
    The morphogenetic remodelling of embryo architecture after implantation culminates in pro-amniotic cavity formation. Despite its key importance, how this transformation occurs remains unknown. Here, we apply high-resolution imaging of embryos developing in vivo and in vitro, spatial RNA sequencing and 3D trophoblast stem cell models to determine the sequence and mechanisms of these remodelling events. We show that cavitation of the embryonic tissue is followed by folding of extra-embryonic tissue to mediate the formation of a second extra-embryonic cavity. Concomitantly, at the boundary between embryonic and extra-embryonic tissues, a hybrid 3D rosette forms. Resolution of this rosette enables the embryonic cavity to invade the extra-embryonic tissue. Subsequently, β1-integrin signalling mediates the formation of multiple extra-embryonic 3D rosettes. Podocalyxin exocytosis leads to their polarized resolution, permitting the extension of embryonic and extra-embryonic cavities and their fusion into a unified pro-amniotic cavity. These morphogenetic transformations of embryogenesis reveal a previously unappreciated mechanism for lumen expansion and fusionThe M.Z.G lab is supported by grants from the European Research Council (669198) and the Welcome Trust (098287/Z/12/Z) and the EU Horizon 2020 Marie Sklodowska-Curie actions (ImageInLife,721537). C.K is supported by BBSRC Doctoral training studentship

    Lung development and regeneration: newly defined cell types and progenitor status

    No full text
    Abstract The lung is the most critical organ of the respiratory system supporting gas exchange. Constant interaction with the external environment makes the lung vulnerable to injury. Thus, a deeper understanding of cellular and molecular processes underlying lung development programs and evaluation of progenitor status within the lung is an essential part of lung regenerative medicine. In this review, we aim to discuss the current understanding of lung development process and regenerative capability. We highlight the advances brought by multi-omics approaches, single-cell transcriptome, in particular, that can help us further dissect the cellular player and molecular signaling underlying those processes

    TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase.

    No full text
    TIPE2, the tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2), plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.7 cells stably transfected with a TIPE2 expression plasmid, as well as TIPE2-deficient macrophages to study the roles of TIPE2 in LPS-induced nitric oxide (NO) and urea production. The results showed that TIPE2-deficiency significantly upregulated the levels of iNOS expression and NO production in LPS-stimulated macrophages, but decreased mRNA levels of arginase I and urea production. However, TIPE2 overexpression in macrophages was capable of downregulating protein levels of LPS-induced iNOS and NO, but generated greater levels of arginase I and urea production. Furthermore, TIPE2-/- mice had higher iNOS protein levels in lung and liver and higher plasma NO concentrations, but lower levels of liver arginase I compared to LPS-treated WT controls. Interestingly, significant increases in IκB degradation and phosphorylation of JNK, p38, and IκB were observed in TIPE2-deficient macrophages following LPS challenge. These results strongly suggest that TIPE2 plays an important role in shifting L-arginase metabolism from production of NO to urea, during host inflammatory response

    Effect of TIPE2 Overexpression on LPS-induced iNOS expression.

    No full text
    <p>RAW264.7 cells were stably transfected with TIPE2 plasmid or vector control. TIPE2 expression levels were determined by quantitative RT-PCR (<b>A</b>) and Western blot (<b>B</b>), respectively. For quantitative PCR, the results were presented as folds expression of TIPE2 RNA to that of β-actin. TIPE2 overexpression RAW264.7 cells or control cells were treated with 100 ng/mL LPS for 24 h, and iNOS mRNA (<b>C</b>) and protein (<b>D</b>) levels were detected by quantitative PCR and Western blot, respectively. Data are shown as mean ±SE of one representative experiment. **<i>P</i><0.01; ***<i>P</i><0.001.</p

    A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing

    No full text
    Macroautophagy, a key player in protein quality control, is proposed to be systematically impaired in distinct tissues and causes coordinated disruption of protein homeostasis and ageing throughout the body. Although tissue-specific changes in autophagy and ageing have been extensively explored, the mechanism underlying the inter-tissue regulation of autophagy with ageing is poorly understood. Here, we show that a secreted microRNA, mir-83/miR-29, controls the age-related decrease in macroautophagy across tissues in Caenorhabditis elegans. Upregulated in the intestine by hsf-1/HSF1 with age, mir-83 is transported across tissues potentially via extracellular vesicles and disrupts macroautophagy by suppressing CUP-5/MCOLN, a vital autophagy regulator, autonomously in the intestine as well as non-autonomously in body wall muscle. Mutating mir-83 thereby enhances macroautophagy in different tissues, promoting protein homeostasis and longevity. These findings thus identify a microRNA-based mechanism to coordinate the decreasing macroautophagy in various tissues with age

    Increased IκBα, JNK and p38 phosphorylation in TIPE2-deficient macrophages.

    No full text
    <p>Peritoneal macrophages from WT and <i>TIPE2<sup>−/−</sup></i> mice (n = 4) were incubated with or without LPS (100 ng/mL) for the indicated times. Total cell lysates were examined with antibodies to total or phosphorylated IκBα, JNK1/2, p38 and ERK1/2 by Western blot. β-actin was served as a protein loading control.</p

    TIPE2 deficiency increases NO production but decreases urea production in macropahges.

    No full text
    <p>Peritoneal macrophages from WT and <i>TIPE2<sup>−/−</sup></i> mice were treated with 100 ng/mL LPS for 0 h, 3 h, and 24 h. iNOS mRNA (<b>A</b>) and protein (<b>B</b>) levels were determined by quantitative PCR and Western blot, respectively. Expression levels of arginase I and arginase II mRNA were examined by quantitative RT-PCR (<b>D</b> and <b>C</b>). Cells were stimulated with 100 ng/mL LPS for 24 h, and culture supernatants were harvested for measurement of NO and urea (<b>E</b> and <b>F</b>). Data are shown as means ±SE (n = 4) of one representative experiment. *<i>P</i><0.05.</p
    corecore