147 research outputs found

    Contractibility of deformation spaces of G-trees

    Full text link
    Forester has defined spaces of simplicial tree actions for a finitely generated group, called deformation spaces. Culler and Vogtmann's Outer space is an example of a deformation space. Using ideas from Skora's proof of the contractibility of Outer space, we show that under some mild hypotheses deformation spaces are contractible.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-59.abs.htm

    Core and intersection number for group actions on trees

    Full text link
    We present the construction of some kind of "convex core" for the product of two actions of a group on \bbR-trees. This geometric construction allows to generalize and unify the intersection number of two curves or of two measured foliations on a surface, Scott's intersection number of splittings, and the apparition of surfaces in Fujiwara-Papasoglu's construction of the JSJ splitting. In particular, this construction allows a topological interpretation of the intersection number analogous to the definition for curves in surfaces. As an application of this construction, we prove that an irreducible automorphism of the free group whose stable and unstable trees are geometric, is actually induced a pseudo-Anosov homeomorphism on a surface

    The outer space of a free product

    Full text link
    We associate a contractible ``outer space'' to any free product of groups G=G_1*...*G_q. It equals Culler-Vogtmann space when G is free, McCullough-Miller space when no G_i is Z. Our proof of contractibility (given when G is not free) is based on Skora's idea of deforming morphisms between trees. Using the action of Out(G) on this space, we show that Out(G) has finite virtual cohomological dimension, or is VFL (it has a finite index subgroup with a finite classifying space), if the groups G_i and Out(G_i) have similar properties. We deduce that Out(G) is VFL if G is a torsion-free hyperbolic group, or a limit group (finitely generated fully residually free group).Comment: Updated reference. To appear in Proc. L.M.

    A very short proof of Forester's rigidity result

    Full text link
    The deformation space of a simplicial G-tree T is the set of G-trees which can be obtained from T by some collapse and expansion moves, or equivalently, which have the same elliptic subgroups as T. We give a short proof of a rigidity result by Forester which gives a sufficient condition for a deformation space to contain an Aut(G)-invariant G-tree. This gives a sufficient condition for a JSJ splitting to be invariant under automorphisms of G. More precisely, the theorem claims that a deformation space contains at most one strongly slide-free G-tree, where strongly slide-free means the following: whenever two edges e_1, e_2 incident on a same vertex v are such that G_{e_1} is a subset of G_{e_2}, then e_1 and e_2 are in the same orbit under G_v.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol7/paper10.abs.htm

    The isomorphism problem for all hyperbolic groups

    Full text link
    We give a solution to Dehn's isomorphism problem for the class of all hyperbolic groups, possibly with torsion. We also prove a relative version for groups with peripheral structures. As a corollary, we give a uniform solution to Whitehead's problem asking whether two tuples of elements of a hyperbolic group GG are in the same orbit under the action of \Aut(G). We also get an algorithm computing a generating set of the group of automorphisms of a hyperbolic group preserving a peripheral structure.Comment: 71 pages, 4 figure

    Deformation spaces of trees

    Full text link
    Let G be a finitely generated group. Two simplicial G-trees are said to be in the same deformation space if they have the same elliptic subgroups (if H fixes a point in one tree, it also does in the other). Examples include Culler-Vogtmann's outer space, and spaces of JSJ decompositions. We discuss what features are common to trees in a given deformation space, how to pass from one tree to all other trees in its deformation space, and the topology of deformation spaces. In particular, we prove that all deformation spaces are contractible complexes.Comment: Update to published version. 43 page

    Splittings and automorphisms of relatively hyperbolic groups

    Full text link
    We study automorphisms of a relatively hyperbolic group G. When G is one-ended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GL_n(Z) fixing certain basis elements. When more general parabolic groups are allowed, these subgroups of GL_n(Z) have to be replaced by McCool groups: automorphisms of parabolic groups acting trivially (i.e. by conjugation) on certain subgroups. Given a malnormal quasiconvex subgroup P of a hyperbolic group G, we view G as hyperbolic relative to P and we apply the previous analysis to describe the group Out(P to G) of automorphisms of P that extend to G: it is virtually a McCool group. If Out(P to G) is infinite, then P is a vertex group in a splitting of G. If P is torsion-free, then Out(P to G) is of type VF, in particular finitely presented. We also determine when Out(G) is infinite, for G relatively hyperbolic. The interesting case is when G is infinitely-ended and has torsion. When G is hyperbolic, we show that Out(G) is infinite if and only if G splits over a maximal virtually cyclic subgroup with infinite center. In general we show that infiniteness of Out(G) comes from the existence of a splitting with infinitely many twists, or having a vertex group that is maximal parabolic with infinitely many automorphisms acting trivially on incident edge groups.Comment: Minor modifications. To appear in Geometry Groups and Dynamic
    • …
    corecore