27 research outputs found

    Protein Alterations in Infiltrating Ductal Carcinomas of the Breast as Detected by Nonequilibrium pH Gradient Electrophoresis and Mass Spectrometry

    Get PDF
    Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues

    Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thiomonas </it>strains are ubiquitous in arsenic-contaminated environments. Differences between <it>Thiomonas </it>strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five <it>Thiomonas </it>strains, that are interesting in terms of arsenic metabolism were selected: <it>T. arsenivorans</it>, <it>Thiomonas </it>spp. WJ68 and 3As are able to oxidise As(III), while <it>Thiomonas </it>sp. Ynys1 and <it>T. perometabolis </it>are not. Moreover, <it>T. arsenivorans </it>and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor.</p> <p>Results</p> <p>The metabolism of carbon and arsenic was compared in the five <it>Thiomonas </it>strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/<it>rpoA </it>gene phylogeny, especially regarding arsenic metabolism. Physiologically, <it>T. perometabolis </it>and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the <it>aox </it>arsenic-oxidising genes and carried only a single <it>ars </it>arsenic resistance operon. <it>Thiomonas arsenivorans </it>belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in <it>T. arsenivorans</it>, the <it>rbc</it>/<it>cbb </it>genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in <it>Thiomonas </it>sp. 3As.</p> <p>Conclusion</p> <p>Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.</p

    A bonnes défenses, bonnes odeurs

    No full text
    National audienc

    Grapevine vocs emissions triggered by elicitation –assessment of two french vineyards

    No full text
    International audienceGrapevine foliar volatile organic compounds (VOCs) releases are induced by elicitor applications.Their emissions have been followed along the growing season on two geographically separatedBurgundy and Bordeaux (Chardonnay and Cabernet franc cultivars, respectively) French vineyards. Inyear 2019, fortunately lacking of endogenous disease, VOCs were collected under non-destructivemode, in four hours with SBSE sensors entrapped into a confinement Teflon bag. Then the monitoringof VOCs enables to distinguish between weak (COS-OGA (Bastid©) and CuSO4) and strong elicitors(MeJA).Although monoterpene Ocimenes are constitutively present among the scent of the twovineyards, their levels are particularly increased in elicited grapevines and this, all along the growingseason. Others terpenes such as sesquiterpenes (i.e. b-Caryophyllene) and others compounds (i.e.Hexenyl acetate, nonanal) were rather depending on vineyards and elicitors used.In addition, phenological stages, climate and particularly daily averaged temperature mighttremendously biases the amount of VOCs signal and should be taken in account upon VOC emissioncollect

    Grapevine vocs emissions triggered by elicitation –assessment of two french vineyards

    No full text
    International audienceGrapevine foliar volatile organic compounds (VOCs) releases are induced by elicitor applications.Their emissions have been followed along the growing season on two geographically separatedBurgundy and Bordeaux (Chardonnay and Cabernet franc cultivars, respectively) French vineyards. Inyear 2019, fortunately lacking of endogenous disease, VOCs were collected under non-destructivemode, in four hours with SBSE sensors entrapped into a confinement Teflon bag. Then the monitoringof VOCs enables to distinguish between weak (COS-OGA (Bastid©) and CuSO4) and strong elicitors(MeJA).Although monoterpene Ocimenes are constitutively present among the scent of the twovineyards, their levels are particularly increased in elicited grapevines and this, all along the growingseason. Others terpenes such as sesquiterpenes (i.e. b-Caryophyllene) and others compounds (i.e.Hexenyl acetate, nonanal) were rather depending on vineyards and elicitors used.In addition, phenological stages, climate and particularly daily averaged temperature mighttremendously biases the amount of VOCs signal and should be taken in account upon VOC emissioncollect

    UTILISATION D'OLIGOMÈRES D'ALGINATES POUR AMÉLIORER LA PROTECTION DES PLANTES CONTRE LES PATHOGÈNES

    No full text
    The invention concerns the use of alginate oligomers in sequence α(1-4)Guluronane and/or ß(1-4)Mannuronane having a DP greater than 30, as an active ingredient of biocontrol products in plants, and that may be combined with another molecules such as phytohormones, against cryptogamic diseases of plants, in particular of vine (Vitis vinifera), or to protect other species against aggressors such as pathogenic microbes or insects.L'invention concerne l'utilisation d'oligomĂšres d'alginate dans la sĂ©quence α(1-4)Guluronane et/ou ß(1-4)Mannuronane ayant un DP supĂ©rieur Ă  30, en tant que principe actif de produits de lutte biologique dans des plantes, et qui peuvent ĂȘtre combinĂ©es avec d'autres molĂ©cules telles que des phytohormones, contre des maladies cryptogamiques de plantes, en particulier de la vigne (Vitis vinifera), ou pour protĂ©ger d'autres espĂšces contre des agressions telles que des microbes pathogĂšnes ou des insectes

    Elicitor-Induced VOC Emission by Grapevine Leaves: Characterisation in the Vineyard

    No full text
    International audienceThe present study is aimed at determining whether leaf volatile organic compounds (VOCs) are good markers of the grapevine response to defence elicitors in the field. It was carried out in two distinct French vineyards (Burgundy and Bordeaux) over 3 years. The commercial elicitor Bastid¼ (Syngenta, Saint-Sauveur, France) (COS-OGA) was first used to optimise the VOCs’ capture in the field; by bagging stems together with a stir bar sorptive extraction (SBSE) sensor. Three elicitors (Bastid¼, copper sulphate and methyl jasmonate) were assessed at three phenological stages of the grapevines by monitoring stilbene phytoalexins and VOCs. Stilbene production was low and variable between treatments and phenological stages. VOCs—particularly terpenes—were induced by all elicitors. However, the response profiles depended on the type of elicitor, the phenological stage and the vineyard, and no sole common VOC was found. The levels of VOC emissions discriminated between weak (Bastid¼ and copper sulphate) and strong (methyl jasmonate) inducers. Ocimene isomers were constitutively present in the overall blends of the vineyards and increased by the elicitors’ treatments, whilst other VOCs were newly released throughout the growing seasons. Nonetheless, the plant development and climate factors undoubtedly influenced the release and profiles of the leaf VOCs.</jats:p

    Utilisation et possibilités de méthodes dites -omiques en viticulture

    No full text
    National audienc

    VOCs are relevant biomarkers of elicitor-induced defences in grapevine

    Get PDF
    International audienceGrapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene alpha-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli, Romeo, Bion, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards
    corecore