48 research outputs found

    Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor

    Get PDF
    Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, the effect of diet on developmental stage or genetic strain is unclear. Therefore, the objective of this chapter is to evaluate the effects of a well-established rye model diet during either the early or the late phase of development on performance, bone mineralization, and morphometric analysis. Furthermore, intestinal integrity evaluated by liver bacterial translocation, leakage of FITC-d, and gene expression of tight junctions across three diverse genetic backgrounds Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl are also discussed

    Prokaryotes Rule the World

    Get PDF
    For millions of years, prokaryotic organisms have functioned as a vital selective force shaping eukaryotic evolution. It is now widely accepted that gut bacteria play a vital role in various physiological and metabolic activities of hosts, and thus, it is essential to maintain their homeostasis. Previous studies have shown an association of gut bacterial imbalance (dysbiosis) associated with several pathologies. However, very little is known about possible mechanisms involved between bacteria and hosts to maintain their homeostasis in the gut. Bacterial activities, such as cooperation (biofilm formation, horizontal gene transfer, quorum sensing, etc.), antagonism, and combination, and host responses of their immune system, gut barrier functions, and different dietary components have been identified as crucial factors for maintaining bacterial homeostasis in the gut. Our understanding of several possible mechanisms involved in gut bacterial homeostasis should be widened to modulate their composition or treat diseases. The objective of this chapter is to provide an overview of different factors involved in gut bacterial homeostasis with an emphasis on host intestinal barrier and immune system, dietary components, and quorum sensing. Also, brief information regarding roles of microbiota on gut-brain axis has also been included

    Neuroimmunopathology in Toxoplasmic Encephalitis

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite that causes mortality because of significant neuropathology. It is widespread in neonatal infections. Although the neuroimmunopathogenesis of toxoplasmic encephalitis (TE) has been studied for many years, it is still not completely understood, showing the disease’s severity. The urge to write this chapter comes at this stage. The sections covered in this chapter show the pathogenesis that has been established and characterized so far. The involvement of astrocytes and microglia in the development of neuropathology, which begins with tachyzoites crossing the blood-brain barrier during acute infection, has been explored. The molecular mechanism between schizophrenia and TE has been thoroughly proven. Uncovering the molecular pathogenesis of TE is critical for both understanding neuropathology and elucidating the link between neuropsychiatric diseases. Each part covered here is expected to contribute to developing novel therapeutic agents for the treatment and maybe prevention of neuropathology. The pathogenesis of the steady progression of encephalitis has been meticulously revealed. Thus, this chapter will offer significant insight into developing novel treatments for all organisms suffering from this disease

    Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry

    Get PDF
    The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry

    Neurocysticercosis: An Overview of Pathology and Pathogenesis

    Get PDF
    Neurocysticercosis (NCC), a subtle parasite infection of the central nervous system, is a powerful example of the complex interaction between human behavior, zoonotic transmission, and neurological illness development. Given the disease’s worldwide prevalence and potentially fatal neurological consequences, research into NCC is critical for advancing knowledge, creating effective diagnostic tools and treatment options, and adopting preventative measures to lessen the disease’s impact. Cysticerci causes an immunological response in the CNS, resulting in inflammation and immune cell recruitment. The existence of intraventricular cysts, cysts in the cerebral aqueduct or fourth ventricle, and the degree of inflammation and scarring induced by the infection are all risk factors for the development of hydrocephalus. This book chapter provides an in-depth exploration of the pathology and pathogenesis of NCC, discussing the life cycle of the Taenia solium parasite, its invasion of the central nervous system, and the formation of cysticerci, as well as the diagnostic challenges and imaging findings, clinical manifestations, and potential neurological complications associated with NCC, serving as a valuable resource for medical professionals, researchers, and policymakers

    Evaluation of Bone Marrow Adipose Tissue and Bone Mineralization on Broiler Chickens Affected by Wooden Breast Myopathy

    Get PDF
    In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P < 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization

    Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens

    Get PDF
    A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0–16, grower d16–31, finisher d31–42, and withdrawal d42–52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16–31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET
    corecore