774 research outputs found

    Early epigenetic cancer decisions

    Get PDF
    A cancer dogma states that inactivation of oncogene(s) can cause cancer remission, implying that oncogenes are the Achilles' heel of cancers. This current model of cancer has kept oncogenes firmly in focus as therapeutic targets and is in agreement with the fact that in human cancers all cancerous cells, with independence of the cellular heterogeneity existing within the tumour, carry the same oncogenic genetic lesions. However, recent studies of the interactions between an oncogene and its target cell have shown that oncogenes contribute to cancer development via developmental reprogramming of the epigenome within the target cell. These results provide the first evidence that carcinogenesis can be initiated by epigenetic stem cell reprogramming, and uncover a new role for oncogenes in the origin of cancer. Here we analyse these evidences and discuss how this vision offers new avenues for developing novel anti-cancer interventions.Research in our group is partially supported by FEDER and by MICINN (SAF2012-32810), by NIH grant (R01 CA109335-04A1), by the ARIMMORA project (FP7-ENV-2011, European Union Seventh Framework Program), by Junta de Castilla y Leon (BIO/SA06/13), and by the Deutsche José Carreras Leukämie-Stiftung (DJCLS project 13/26). All Spanish funding is co-sponsored by the European Union FEDER program. ISG is an API lab of the EuroSyStem project and a partner within the Marie Curie Initial Training Network DECIDE (Decision-making within cells and differentiation entity therapies) funded by the European Union’s Seventh Programme under grant agreement n° 315902.Peer Reviewe

    The Second Oncogenic Hit Determines the Cell Fate of ETV6-RUNX1 Positive Leukemia

    Get PDF
    © 2021 Rodríguez-Hernández, Casado-García, Isidro-Hernández, Picard, Raboso-Gallego, Alemán-Arteaga, Orfao, Blanco, Riesco, Prieto-Matos, García Criado, García Cenador, Hock, Enver, Sanchez-Garcia and Vicente-Dueñas.ETV6-RUNX1 is almost exclusively associated with childhood B-cell acute lymphoblastic leukemia (B-ALL), but the consequences of ETV6-RUNX1 expression on cell lineage decisions during B-cell leukemogenesis are completely unknown. Clinically silent ETV6-RUNX1 preleukemic clones are frequently found in neonatal cord blood, but few carriers develop B-ALL as a result of secondary genetic alterations. The understanding of the mechanisms underlying the first transforming steps could greatly advance the development of non-toxic prophylactic interventions. Using genetic lineage tracing, we examined the capacity of ETV6-RUNX1 to instruct a malignant phenotype in the hematopoietic lineage by cell-specific Cre-mediated activation of ETV6-RUNX1 from the endogenous Etv6 gene locus. Here we show that, while ETV6-RUNX1 has the propensity to trigger both T- and B-lymphoid malignancies, it is the second hit that determines tumor cell identity. To instigate leukemia, both oncogenic hits must place early in the development of hematopoietic/precursor cells, not in already committed B-cells. Depending on the nature of the second hit, the resulting B-ALLs presented distinct entities that were clearly separable based on their gene expression profiles. Our findings give a novel mechanistic insight into the early steps of ETV6-RUNX1+ B-ALL development and might have major implications for the potential development of ETV6-RUNX1+ B-ALL prevention strategies.Research in CV-D group has been funded by Instituto de Salud Carlos III through the project “PI17/00167” and by a “Miguel Servet Grant” (CPII19/00024—AES 2017–2020), co-funded by European Regional Development Fund/European Social Fund (“A way to make Europe”/“Investing in your future”). Research in the IS-G group is partially supported by FEDER and SAF2015-64420-R MINECO/FEDER, UE, RTI2018-093314-B-I00 MCIU/AEI/FEDER, UE, and by Junta de Castilla y León (UIC-017, CSI001U16, CSI234P18, and CSI144P20). The IS-G lab is a member of the EuroSyStem and the DECIDE Network funded by the European Union under the FP7 program. CV-D and IS-G have been supported by the German Federal Office for Radiation Protection (BfS)–Germany (FKZ: 3618S32274). IS-G has been supported by the Fundacion Unoentrecienmil (CUNINA project). HH was supported by a Hyundai Hope on Wheels scholar grant. GR-H was supported by FSE-Conserjería de Educación de la Junta de Castilla y León (CSI001-15). AC-G and MI-H are supported by FSE-Conserjería de Educación de la Junta de Castilla y León 2019 and 2020 (ESF—European Social Fund) fellowship, respectively (REF. CSI067-18 and CSI021-19). JR-G was supported by a scholarship from the University of Salamanca, co-financed by Banco Santander and ESF. SA-A was supported by RTI2018-093314-B-I00 MCIU/AEI/FEDER fellowship (PRE2019-088887)

    The Second Oncogenic Hit Determines the Cell Fate of ETV6-RUNX1 Positive Leukemia

    Get PDF
    ETV6-RUNX1 is almost exclusively associated with childhood B-cell acute lymphoblastic leukemia (B-ALL), but the consequences of ETV6-RUNX1 expression on cell lineage decisions during B-cell leukemogenesis are completely unknown. Clinically silent ETV6-RUNX1 preleukemic clones are frequently found in neonatal cord blood, but few carriers develop B-ALL as a result of secondary genetic alterations. The understanding of the mechanisms underlying the first transforming steps could greatly advance the development of non-toxic prophylactic interventions. Using genetic lineage tracing, we examined the capacity of ETV6-RUNX1 to instruct a malignant phenotype in the hematopoietic lineage by cell-specific Cre-mediated activation of ETV6-RUNX1 from the endogenous Etv6 gene locus. Here we show that, while ETV6-RUNX1 has the propensity to trigger both T- and B-lymphoid malignancies, it is the second hit that determines tumor cell identity. To instigate leukemia, both oncogenic hits must place early in the development of hematopoietic/precursor cells, not in already committed B-cells. Depending on the nature of the second hit, the resulting B-ALLs presented distinct entities that were clearly separable based on their gene expression profiles. Our findings give a novel mechanistic insight into the early steps of ETV6-RUNX1+ B-ALL development and might have major implications for the potential development of ETV6-RUNX1+ B-ALL prevention strategies

    V2Ox-based hole-selective contacts for c-Si interdigitated back-contacted solar cells

    Get PDF
    Over the last few years, transition metal oxide layers have been proposed as selective contacts both for electrons and holes and successfully applied to silicon solar cells. However, better published results need the use of both a thin and high quality intrinsic amorphous Si layer and TCO (Transparent Conductive Oxide) films. In this work, we explore the use of vanadium suboxide (V2Ox) capped with a thin Ni layer as a hole transport layer trying to avoid both the intrinsic amorphous silicon layer and the TCO contact layer. Obtained figures of merit for Ni/V2Ox/c-Si(n) test samples are saturation current densities of 175 fA cm-2 and specific contact resistance below 115 mO cm2 on 40 nm thick V2Ox layers. Finally, the Ni/V2Ox stack is used with an interdigitated back-contacted c-Si(n) solar cell architecture fully fabricated at low temperatures. An open circuit voltage, a short circuit current and a fill factor of 656 mV, 40.7 mA cm-2 and 74.0% are achieved, respectively, leading to a power conversion efficiency of 19.7%. These results confirm the high potential of Ni/V2Ox stacks as hole-selective contacts on crystalline silicon photovoltaics.Peer ReviewedPostprint (published version

    A new ETV6-RUNX1 in vivo model produces a phenocopy of the human Pb-ALL

    Get PDF
    Resumen del trabajo presentado al 57th American Society of Hematology (ASH) Annual Meeting and Exposition, celebrado en Orlando (Florida-US) del 5 al 8 de diciembre de 2015.-- et al.[Introduction]: The ETV6-RUNX1 fusion gene, the most common subtype of childhood pB-ALL, is acquired in utero, producing a persistent and hidden preleukemic clone. However, the underlying mechanism explaining how the preleukemic clone evolves to pB-ALL remains to be identified. The lack of genetically engineered human-like ETV6-RUNX1pB-ALL models has hampered our understanding of the pathogenesis of this disease. [Methods]: We have used a novel experimental approach to generate a murine strain that mimics the human ETV6-RUNX1 pB-ALL. We expressed ETV6-RUNX1 specifically in hematopoietic stem cells (HSC) of C57BL/6 x CBA mice by placing ETV6-RUNX1 under the control of the Sca1 promoter. Two founder mice were obtained for the Sca1-ETV6-RUNX1 transgene, which had normal gestation, were viable and developed normally. Sca1-ETV6-RUNX1 transgenic mice were characterized with respect to clinical, immunephenotypic and genetic characteristics. For the detection of shared secondary genomic alterations we analyzed three murine Sca1-ETV6-RUNX1 and 11 ETV6-RUNX1positive human pB-ALL and corresponding germline by whole-exome (WES) and whole-genome sequencing using a HiSeq 2500 (Illumina) platform.[Results]: In our transgenic murine model Sca1-ETV6-RUNX1 transgene expression was detected in HSCs, while there was no detectable expression in pro B cells or later stages of B-cell development, which mimics human ETV6-RUNX1 preleukemic biology. Sca1-ETV6-RUNX1 mice developed exclusively pB-ALL at a low penetrance (7.5%; 3 out of 40) with a CD19+B220+IgM- cell surface phenotype. Overall survival was not significantly reduced compared to wild-type mice (P value = 0.7901). pB-ALL in Sca1-ETV6-RUNX1 mice manifested with splenomegaly, disruption of splenic architecture, and appearance of blast cells in the peripheral blood (PB). All leukemic cells displayed clonal immature BCR rearrangement. Tumor pro B cells grew independent of IL-7 and were able to propagate the disease when transplanted into sub-lethally irradiated syngeneic recipient mice. Whole-exome sequencing of murine pB-ALL revealed in one mouse a deletion of three amino acids in the B-cell differentiation factor EBF1, which is well known in the context of human ETV6-RUNX1 leukemia. Additionally we found mutations in genes implicated in histone modification, i.e. in KDM5Ccausing a premature translation stop. We compared the genomic alterations detected in the mouse model to published genomic data of pediatric ETV6-RUNX1 pB-ALL and identified multiple copy number variations, which are shared between the murine and human ETV6-RUNX1 pB-ALL. Among them were copy number gains and losses including i.e. the tumorsuppressor locus CDKN2A/B with a well-known role in human and mouse pB-ALL. A high proportion of genes implicated in histone modification was also mutated in published data of human ETV6-RUNX1 positive pB-ALL. We validated this novel finding of recurrent alterations of histone modifying genes in both the murine model and the human disease using an independent human ETV6-RUNX1 cohort of 11 patients. In this cohort were able to reproduce this finding. Similar to the murine model, we also detected a missense mutation in the methyltransferase KDM5C in one patient of our cohort of ETV6-RUNX1positive patients.[Conclusion]: In summary, we have characterized a new Sca1-ETV6-RUNX1 mouse model and this is, to our knowledge the first model, which represents a phenocopy of the human pB-ALL. Sca1-ETV6-RUNX1 mice develop exclusively pB-ALL at a very low penetrance as it is the case in human ETV6-RUNX1 positive pB-ALL. The acquisition of secondary mutations in pB-ALL with a high proportion in histone modifying genes confers the second hit for the conversion of a preleukemic clone into the clinically overt ETV6-RUNX1 positive pB-ALL disease. These findings are important for encouraging novel interventions that might help to prevent or treat ETV6-RUNX1 positive childhood leukemias.Peer Reviewe

    Pandemia e Impacto en los procesos de Investigación, Desarrollo e Innovación I+D+i

    Get PDF
    Sin duda alguna uno de los eventos más trascendentales que han sucedidoen este siglo es la pandemia provocada por el virus SARS-COV-2, impactando fuertemente en todos los aspectos sociales y económicosa nivel mundial, incluyendo el avance de la ciencia y la tecnología

    Loss of Pax5 exploits sca1-BCR-ABLp190 susceptibility to confer the metabolic shift essential for pB-ALL

    Get PDF
    Preleukemic clones carrying BCR-ABLp190 oncogenic lesions are found in neonatal cord blood, where the majority of preleukemic carriers do not convert into precursor B-cell acute lymphoblastic leukemia (pB-ALL). However, the critical question of how these preleukemic cells transform into pB-ALL remains undefined. Here, we model a BCR-ABLp190 preleukemic state and show that limiting BCR-ABLp190 expression to hematopoietic stem/progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes pB-ALL at low penetrance, which resembles the human disease. pB-ALL blast cells were BCR-ABL–negative and transcriptionally similar to pro-B/pre-B cells, suggesting disease onset upon reduced Pax5 functionality. Consistent with this, double Sca1-BCR-ABLp190+Pax5+/− mice developed pB-ALL with shorter latencies, 90% incidence, and accumulation of genomic alterations in the remaining wild-type Pax5 allele. Mechanistically, the Pax5-deficient leukemic pro-B cells exhibited a metabolic switch toward increased glucose utilization and energy metabolism. Transcriptome analysis revealed that metabolic genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were upregulated in Pax5-deficient leukemic cells, and a similar metabolic signature could be observed in human leukemia. Our studies unveil the first in vivo evidence that the combination between Sca1-BCR-ABLp190 and metabolic reprogramming imposed by reduced Pax5 expression is sufficient for pB-ALL development. These findings might help to prevent conversion of BCR-ABLp190 preleukemic cells.J. Hauer has been supported by the German Cancer Aid (Project 110997 and Translational Oncology Program 70112951), the German Jose Carreras Foundation (DJCLS 02R/2016), the Kinderkrebsstiftung (2016/17), and the "Elterninitiative Kinderkrebstiftung e.V." S. Ginzel has been supported by a scholarship of the Hochschule Bonn-Rhein-Sieg. M. Muschen is an HHMI Faculty Scholar (HHMI- € 55108547) and supported by NIH/NCI through an Outstanding Investigator Award (R35CA197628, R01CA137060, R01CA157644, R01CA172558, R01CA213138) to M. Muschen, a Wellcome Trust Senior Investigator Award, € the Leukemia and Lymphoma Society, the Norman and Sadie Lee Foundation (for Pediatric Cancer, to M. Muschen), and the Dr. Ralph and Marian € Falk Medical Research Trust (to M. Muschen), Cancer Research Institute € through a Clinic and Laboratory Integration Program grant (to M. Muschen) € and the California Institute for Regenerative Medicine (CIRM) through DISC2-10061. A. Borkhardt has been supported by the German Children's Cancer Foundation and the Federal Ministry of Education and Research, Bonn, Germany. Research in I. Sanchez-García's group is partially supported by FEDER and by MINECO (SAF2012-32810, SAF2015-64420-R, and Red de Excelencia Consolider OncoBIO SAF2014-57791-REDC), Instituto de Salud Carlos III (PIE14/00066), ISCIII- Plan de Ayudas IBSAL 2015 Proyectos Integrados (IBY15/00003), by Junta de Castilla y Leon (BIO/SA51/15, CSI001U14, UIC-017, and CSI001U16), Fundacion Inocente Inocente and by the ARIMMORA project [European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282891]. I. Sanchez-García's lab is a member of the EuroSyStem and the DECIDE Network funded by the European Union under the FP7 program. A. Borkhardt and I. Sanchez-García have been supported by the German Carreras Foundation (DJCLS R13/26). Research in C. Vicente-Duenas's ~ group is partially supported by FEDER, Ministerio de Economía y Competitividad ("Miguel Servet" Grant - CP14/00082 - AES 2013-2016) and (PI17/00167) from the Instituto de Salud Carlos III. A. Martín-Lorenzo and G. Rodríguez-Hernandez were supported by FSE-Conserjería de Educacion de la Junta de Castilla y Leon (CSI001-13 and CSI001-15, respectively). F. Auer was supported by a Deutsche Forschungsgemeinschaft (DFG) fellowship (AU 525/1-1)

    Lmo2 expression defines tumor cell identity during T-cell leukemogenesis

    Get PDF
    The impact of LMO2 expression on cell lineage decisions during T-cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T-cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human-like T-ALL. In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T-ALL. The resulting T-ALLs lacked LMO2 and its target-gene expression, and histologically, transcriptionally, and genetically similar to human LMO2-driven T-ALL. We next found that during T-ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T-ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre-mediated activation of Lmo2 at different stages of B-cell development induces systematically and unexpectedly T-ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T-ALL to current therapies.J.H. has been supported by the German Cancer Aid (Project 110997 and Translational Oncology Program 70112951), the German Jose Carreras Leukemia Foundation (DJCLS 02R/2016), Deutsches Konsortium für Translationale Krebsforschung (DKTK), Joint funding (Targeting MYC L*10), the Kinderkrebsstiftung (2016/17), and the “Elterninitiative Kinderkrebsklinik e.V. Düsseldorf”. SG has been supported by a scholarship of the Hochschule Bonn-Rhein-Sieg. AB has been supported by the German Children's Cancer Foundation and the Federal Ministry of Education and Research, Bonn, Germany. Research in ISG group is partially supported by FEDER and by MINECO (SAF2012-32810, SAF2015-64420-R, and Red de Excelencia Consolider OncoBIO SAF2014-57791-REDC), Instituto de Salud Carlos III (PIE14/00066), ISCIII- Plan de Ayudas IBSAL 2015 Proyectos Integrados (IBY15/00003), by Junta de Castilla y León (BIO/SA51/15, CSI001U14, UIC-017, and CSI001U16), Fundacion Inocente Inocente, and by the ARIMMORA project (European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282891). ISG Lab is a member of the EuroSyStem and the DECIDE Network funded by the European Union under the FP7 program. AB and ISG have been supported by the German Carreras Foundation (DJCLS R13/26). IGR was supported by BES-Ministerio de Economía y Competitividad (BES-2013-063789). AML and GRH were supported by FSE-Conserjería de Educación de la Junta de Castilla y León (CSI001-13, CSI001-15). Research in CVD group is partially supported by FEDER, “Miguel Servet” Grant (CP14/00082—AES 2013-2016) from the Instituto de Salud Carlos III (Ministerio de Economía y Competitividad), “Fondo de Investigaciones Sanitarias/Instituto de Salud Carlos III” (PI17/00167), and by the Lady Tata International Award for Research in Leukaemia 2016–2017
    corecore