16 research outputs found

    In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology

    Get PDF
    Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way.National Institutes of Health (U.S.) (Grant R01HL090856)Singapore-MIT Alliance Computational and Systems Biology Progra

    Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Get PDF
    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CC). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following Integrated Soil Fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C:N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots, when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and non-legume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses

    Hemodynamic Environments from Opposing Sides of Human Aortic Valve Leaflets Evoke Distinct Endothelial Phenotypes In Vitro

    Get PDF
    The regulation of valvular endothelial phenotypes by the hemodynamic environments of the human aortic valve is poorly understood. The nodular lesions of calcific aortic stenosis (CAS) develop predominantly beneath the aortic surface of the valve leaflets in the valvular fibrosa layer. However, the mechanisms of this regional localization remain poorly characterized. In this study, we combine numerical simulation with in vitro experimentation to investigate the hypothesis that the previously documented differences between valve endothelial phenotypes are linked to distinct hemodynamic environments characteristic of these individual anatomical locations. A finite-element model of the aortic valve was created, describing the dynamic motion of the valve cusps and blood in the valve throughout the cardiac cycle. A fluid mesh with high resolution on the fluid boundary was used to allow accurate computation of the wall shear stresses. This model was used to compute two distinct shear stress waveforms, one for the ventricular surface and one for the aortic surface. These waveforms were then applied experimentally to cultured human endothelial cells and the expression of several pathophysiological relevant genes was assessed. Compared to endothelial cells subjected to shear stress waveforms representative of the aortic face, the endothelial cells subjected to the ventricular waveform showed significantly increased expression of the “atheroprotective” transcription factor Kruppel-like factor 2 (KLF2) and the matricellular protein Nephroblastoma overexpressed (NOV), and suppressed expression of chemokine Monocyte-chemotactic protein-1 (MCP-1). Our observations suggest that the difference in shear stress waveforms between the two sides of the aortic valve leaflet may contribute to the documented differential side-specific gene expression, and may be relevant for the development and progression of CAS and the potential role of endothelial mechanotransduction in this disease.National Institutes of Health (U.S.) (Molecular, Cellular, and Tissue Biomechanics training grant (T32 EB006348))National Institutes of Health (U.S.) (NHLBI RO1-HL7066686)Charles Stark Draper Laboratory (Fellowship

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc

    Biomechanical Induction of Hematopoiesis

    No full text
    The present invention provides methods and compositions for increasing the hematopoietic potential of a population of hematopoietic progenitor cells, vascular cells, and or hemogenic endothelium, by exposing the cells to at least one external biomechanical stimulus. More specifically, the application of shear stress to hematopoietic progenitor cells or endothelial cells stimulates hematopoiesis, with or without concurrent application of other extrinsic modulators of hematopoiesi

    Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context

    No full text
    We analyzed tumor necrosis factor (TNF) responses of human umbilical artery and vein endothelial cells (HUAECs and HUVECs) in organ and cell culture. in organ culture, TNF induced expression of E-selectin, VCAM-1, and ICAM-1 on HUVECs but only ICAM-1 on HUAECs. Activation of nuclear factor-kappa B, c-jun, and ATF2 by TNF was comparable in HUAECs and HUVECs, whereas binding of transcription factors and p300 co-activator to the E-selectin enhancer was lower in HUAECs compared to HUVECs. In cell culture, HUAECs rapidly acquired inducible E-selectin and VCAM-1 whereas ICAM-1 inducibility decreased. Culture of HUVECs rapidly decreased TNF responses of all three genes. By 72 hours in cell culture, TNF-treated HUVECs and HUAECs showed comparable adhesion molecule induction and transcription factor binding to the E-selectin enhancer. Freshly isolated HUAECs expressed higher levels of Kruppel-like factor 2 (KLF2) than HUVECs, consistent with greater KLF2 induction by arterial levels of shear stress in vitro. KLF2 expression decreased rapidly in both cell types during culture. Transduction of HUVECs with KLF2 reduced TNF-mediated induction of E-selectin and VCAM-1 while increasing ICAM-1 induction and reduced transcription factor/co-activator binding to the E-selectin enhancer. In conclusion, the differential responses of HUAECs and HUVECs to TNF in organ culture correlate with transcription factor/co-activator binding to DNA and converge during cell culture. Flow-induced expression of KLF2 contributes to the in situ responses of HUAECs but not of HUVECs

    In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology

    Get PDF
    AbstractNitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way
    corecore