9 research outputs found
Phage Amplification and Immunomagnetic Separation Combined with Targeted Mass Spectrometry for Sensitive Detection of Viable Bacteria in Complex Food Matrices
We
have developed and describe here for the first time a highly
sensitive method for the fast and unambiguous detection of viable <i>Escherichia coli</i> in food matrices. The new approach is based
on using label-free phages (T4), obligate parasites of bacteria, which
are attractive for pathogen detection because of their inherent natural
specificity and ease of use. A specific immunomagnetic separation
was used to capture the progeny phages produced. Subsequently, T4
phage markers were detected by liquid chromatography coupled to targeted
mass spectrometry. Combining the specificity of these three methodologies
is of great interest in developing an alternative to conventional
time-consuming culture-based technologies for the detection of viable
bacteria for industrial applications. First, optimization experiments
with phage T4 spiked in complex matrices (without a phage amplification
event) were performed and demonstrated specific, sensitive, and reproducible
phage capture and detection in complex matrices including LuriaâBertani
broth, orange juice, and skimmed milk. The method developed was then
applied to the detection of <i>E. coli</i> spiked in foodstuffs
(with a phage amplification event). After having evaluated the impact
of infection duration on assay sensitivity, we showed that our assay
specifically detects viable <i>E. coli</i> in milk at an
initial count of â„1 colony-forming unit (cfu)/mL after an 8-h
infection. This excellent detection limit makes our new approach an
alternative to PCR-based assays for rapid bacterial detection
Bacterial Detection Using Unlabeled Phage Amplification and Mass Spectrometry through Structural and Nonstructural Phage Markers
International audienceno abstrac
Administration of Bacteriophages via Nebulization during Mechanical Ventilation: In Vitro Study and Lung Deposition in Macaques
International audienceBacteriophages have been identified as a potential treatment option to treat lung infection in the context of antibiotic resistance. We performed a preclinical study to predict the efficacy of delivery of bacteriophages against Pseudomonas aeruginosa (PA) when administered via nebulization during mechanical ventilation (MV). We selected a mix of four anti-PA phages containing two Podoviridae and two Myoviridae, with a coverage of 87.8% (36/41) on an international PA reference panel. When administered via nebulization, a loss of 0.30â0.65 log of infective phage titers was measured. No difference between jet, ultrasonic and mesh nebulizers was observed in terms of loss of phage viability, but a higher output was measured with the mesh nebulizer. Interestingly, Myoviridae are significantly more sensitive to nebulization than Podoviridae since their long tail is much more prone to damage. Phage nebulization has been measured as compatible with humidified ventilation. Based on in vitro measurement, the lung deposition prediction of viable phage particles ranges from 6% to 26% of the phages loaded in the nebulizer. Further, 8% to 15% of lung deposition was measured by scintigraphy in three macaques. A phage dose of 1 Ă 109 PFU/mL nebulized by the mesh nebulizer during MV predicts an efficient dose in the lung against PA, comparable with the dose chosen to define the susceptibility of the strain
Inhaled bacteriophage therapy in a porcine model of pneumonia caused by Pseudomonas aeruginosa during mechanical ventilation
International audienceBackground and purpose: Pseudomonas aeruginosa is a main cause of ventilator-associated pneumonia (VAP) with drug-resistant bacteria. Bacteriophage therapy has experienced resurgence to compensate for the limited development of novel antibiotics. However, phage therapy is limited to a compassionate use so far, resulting from lack of adequate studies in relevant pharmacological models. We used a pig model of pneumonia caused by P. aeruginosa that recapitulates essential features of human disease to study the antimicrobial efficacy of nebulized-phage therapy.Experimental approach: (i) Lysis kinetic assays were performed to evaluate in vitro phage antibacterial efficacy against P. aeruginosa and select relevant combinations of lytic phages. (ii) The efficacy of the phage combinations was investigated in vivo (murine model of P. aeruginosa lung infection). (iii) We determined the optimal conditions to ensure efficient phage delivery by aerosol during mechanical ventilation. (iv) Lung antimicrobial efficacy of inhaled-phage therapy was evaluated in pigs, which were anesthetized, mechanically ventilated and infected with P. aeruginosa.Key results: By selecting an active phage cocktail and optimizing aerosol delivery conditions, we were able to deliver high phage concentrations in the lungs, which resulted in a rapid and marked reduction in P. aeruginosa density (1.5 Log reduction, p<0.001). No infective phage was detected in the sera and urines throughout the experiment.Conclusion and implications: Our findings demonstrated: (i) the feasibility of delivering large amounts of active phages by nebulization during mechanical ventilation, (ii) rapid control of in situ infection by inhaled bacteriophage in an experimental model of P. aeruginosa pneumonia with high translational value
Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections
International audienc
Bacterial Detection Using Unlabeled Phage Amplification and Mass Spectrometry through Structural and Nonstructural Phage Markers
According to the World Health Organization,
food safety is an essential
public health priority. In this context, we report a relevant proof
of feasibility for the indirect specific detection of bacteria in
food samples using unlabeled phage amplification coupled to ESI mass
spectrometry analysis and illustrated with the model phage systems
T4 and SPP1. High-resolving power mass spectrometry analysis (including
bottom-up and top-down protein analysis) was used for the discovery
of specific markers of phage infection. Structural components of the
viral particle and nonstructural proteins encoded by the phage genome
were identified. Then, targeted detection of these markers was performed
on a triple quadrupole mass spectrometer operating in the selected
reaction monitoring mode. <i>E. coli</i> at 1 Ă 10<sup>5</sup>, 5 Ă 10<sup>5</sup>, and 1 Ă 10<sup>6</sup> CFU/mL
concentrations was successfully detected after only a 2 h infection
time by monitoring phage T4 structural markers in LuriaâBertani
broth, orange juice, and French bean stew (âcassouletâ)
matrices. Reproducible detection of nonstructural markers was also
demonstrated, particularly when a high titer of input phages was required
to achieve successful amplification. This strategy provides a highly
time-effective and sensitive assay for bacterial detection