115 research outputs found

    Systematic identification of gene families for use as markers for phylogenetic and phylogeny- driven ecological studies of bacteria and archaea and their major subgroups

    Get PDF
    With the astonishing rate that the genomic and metagenomic sequence data sets are accumulating, there are many reasons to constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that are particularly well suited for the tasks at hand. Such gene families have generally been referred to as marker genes. We are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological studies of microbes and their communities. We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology) markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the species from which the genes come, and low variation in copy number across taxa. We describe here an automated protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for all bacteria and archaea, 114 for all bacteria, and much more for some of the individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and phylogenetic ecology analyses of these groups than possible previously.Comment: 24 pages, 3 figure

    Whole genome sequence analysis reveals the broad distribution of the RtxA type 1 secretion system and four novel putative type 1 secretion systems throughout the Legionella genus.

    Get PDF
    Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and translocate effectors with diverse function across the bacterial cell membrane. Legionella pneumophila, the species most commonly associated with Legionellosis, encodes a T1SS at the lssXYZABD locus which is responsible for the secretion of the virulence factor RtxA. Many investigations have failed to detect lssD, the gene encoding the membrane fusion protein of the RtxA T1SS, in non-pneumophila Legionella, which has led to the assumption that this system is a virulence factor exclusively possessed by L. pneumophila. Here we discovered RtxA and its associated T1SS in a novel Legionella taurinensis strain, leading us to question whether this system may be more widespread than previously thought. Through a bioinformatic analysis of publicly available data, we classified and determined the distribution of four T1SSs including the RtxA T1SS and four novel T1SSs among diverse Legionella spp. The ABC transporter of the novel Legionella T1SS Legionella repeat protein secretion system shares structural similarity to those of diverse T1SS families, including the alkaline protease T1SS in Pseudomonas aeruginosa. The Legionella bacteriocin (1-3) secretion systems T1SSs are novel putative bacteriocin transporting T1SSs as their ABC transporters include C-39 peptidase domains in their N-terminal regions, with LB2SS and LB3SS likely constituting a nitrile hydratase leader peptide transport T1SSs. The LB1SS is more closely related to the colicin V T1SS in Escherichia coli. Of 45 Legionella spp. whole genomes examined, 19 (42%) were determined to possess lssB and lssD homologs. Of these 19, only 7 (37%) are known pathogens. There was no difference in the proportions of disease associated and non-disease associated species that possessed the RtxA T1SS (p = 0.4), contrary to the current consensus regarding the RtxA T1SS. These results draw into question the nature of RtxA and its T1SS as a singular virulence factor. Future studies should investigate mechanistic explanations for the association of RtxA with virulence

    Global marine bacterial diversity peaks at high latitudes in winter.

    Get PDF
    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms

    Bacteria isolated from Bengal cat (Felis catus × Prionailurus bengalensis) anal sac secretions produce volatile compounds potentially associated with animal signaling.

    Get PDF
    In social animals, scent secretions and marking behaviors play critical roles in communication, including intraspecific signals, such as identifying individuals and group membership, as well as interspecific signaling. Anal sacs are an important odor producing organ found across the carnivorans (species in the mammalian Order Carnivora). Secretions from the anal sac may be used as chemical signals by animals for behaviors ranging from defense to species recognition to signaling reproductive status. In addition, a recent study suggests that domestic cats utilize short-chain free fatty acids in anal sac secretions for individual recognition. The fermentation hypothesis is the idea that symbiotic microorganisms living in association with animals contribute to odor profiles used in chemical communication and that variation in these chemical signals reflects variation in the microbial community. Here we examine the fermentation hypothesis by characterizing volatile organic compounds (VOC) and bacteria isolated from anal sac secretions collected from a male Bengal cat (Felis catus × Prionailurus bengalensis), a cross between the domestic cat and the leopard cat. Both left and right anal sacs of a male Bengal cat were manually expressed (emptied) and collected. Half of the material was used to culture bacteria or to extract bacterial DNA and the other half was used for VOC analysis. DNA was extracted from the anal sac secretions and used for a 16S rRNA gene PCR amplification and sequencing based characterization of the microbial community. Additionally, some of the material was plated out in order to isolate bacterial colonies. Three taxa (Bacteroides fragilis, Tessaracoccus, and Finegoldia magna) were relatively abundant in the 16S rRNA gene sequence data and also isolated by culturing. Using Solid Phase Microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), we tentatively identified 52 compounds from the Bengal cat anal sac secretions and 67 compounds from cultures of the three bacterial isolates chosen for further analysis. Among 67 compounds tentatively identified from bacterial isolates, 51 were also found in the anal sac secretion. We show that the bacterial community in the anal sac consists primarily of only a few abundant taxa and that isolates of these taxa produce numerous volatiles that are found in the combined anal sac volatile profile. Several of these volatiles are found in anal sac secretions from other carnivorans, and are also associated with known bacterial biosynthesis pathways. This is consistent with the fermentation hypothesis and the possibility that the anal sac is maintained at least in part to house bacteria that produce volatiles for the host

    <i>Teredinibacter waterburyi</i> sp. nov., a marine, cellulolytic endosymbiotic bacterium isolated from the gills of the wood-boring mollusc <i>Bankia setacea</i> (Bivalvia: Teredinidae) and emended description of the genus <i>Teredinibacter</i>

    Get PDF
    A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2-5×0.4-0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10-30 °C), 8.0 (pH 6.5-8.5) and 0.5 M NaCl (range, 0.0-0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae. Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T

    Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation

    Get PDF
    Although the early coral reef-bleaching warning system (NOAA/USA) is established, there is no feasible treatment that can minimize temperature bleaching and/or disease impacts on corals in the field. Here, we present the first attempts to extrapolate the widespread and well-established use of bacterial consortia to protect or improve health in other organisms (e.g., humans and plants) to corals. Manipulation of the coral-associated microbiome was facilitated through addition of a consortium of native (isolated from Pocillopora damicornis and surrounding seawater) putatively beneficial microorganisms for corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related species strains. The results from a controlled aquarium experiment in two temperature regimes (26 °C and 30 °C) and four treatments (pBMC; pBMC with pathogen challenge – Vibrio coralliilyticus, VC; pathogen challenge, VC; and control) revealed the ability of the pBMC consortium to partially mitigate coral bleaching. Significantly reduced coral-bleaching metrics were observed in pBMC-inoculated corals, in contrast to controls without pBMC addition, especially challenged corals, which displayed strong bleaching signs as indicated by significantly lower photopigment contents and Fv/Fm ratios. The structure of the coral microbiome community also differed between treatments and specific bioindicators were correlated with corals inoculated with pBMC (e.g., Cobetia sp.) or VC (e.g., Ruegeria sp.). Our results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts

    PhyloSift Markers Database

    No full text
    Markers database for PhyloSift<br><br><div><p>PhyloSift is a suite of software tools to conduct phylogenetic analysis of genomes and metagenomes.</p><p>Using a reference database of protein sequences, PhyloSift can scan new sequences against that database for homologs and identify the phylogenetic relationship of the new sequence to the database sequences. During this procedure, high quality alignments of codon and<br>amino acid sequence are generated.</p><p>Software Download on GitHub: <a href="https://github.com/gjospin/PhyloSift">https://github.com/gjospin/PhyloSift</a><br></p></div
    • …
    corecore