5 research outputs found

    Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    Get PDF
    A 2D high repetition rate femtosecondlaserablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. PĂ©cheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate FemtosecondLaserAblation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874–6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosolproduced by nanosecond and high repetition rate femtosecondlaserablation of polyacrylamidegels was investigated. Our 2D high repetition rate femtosecondlaserablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laserablation of 0.12-mm wide lane, with 38% mass of particles < 1 ”m. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 ”m depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamidegel particles had very limited impact on the ICP source (ΔT~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak enough to have negligible impact on the ICPMS detection

    Détection et identification de sélénoprotéines par électrophorÚse sur gel associée aux spectrométries de masse atomique et moléculaire

    No full text
    Selenium is a trace element known for its necessity in organisms' development and its beneficial roles in human health. Research in the past five years strengthened the idea that these properties are largely due to the synthesis of selenoproteins in living organisms. Classical methods in proteomics are not adapted to identify minor selenoproteins. In this PhD work, more sensitive and more specific methods complementary to proteomics have been developed for their detection and identification. A stable selenized protein standard has been produced to develop these methods. The development of laser ablation - Inductively Coupled Plasma - Mass spectrometry coupling (LA-ICP-MS) lead to the detection of selenoproteins after separation by polyacrylamide gel electrophoresis (PAGE). Conventional device of laser ablation has been used and then improved with a new device using femtoseconde laser with ultrafast scanning for more sensitive detection of selenoproteins in biological samples. Once detected, selenoproteins have been identified by molecular mass spectrometry. For this purpose selenopeptids from enzymatic digestion of selenoproteins have been detected first by nanochromatography coupled to ICP-MS and sequenced then by means of by nanochromatography coupled to electrospray ionisation tandem mass spectrometry (nanoHPLC-ESI-MS/MS). LA-ICP-MS device has been successful for detection of new selenoproteins in Desulfococcus multivorans bacteria. This identification procedure has been validated on two purified selenoproteins thioredoxin reductase and carboxymathylated glutathion peroxidase. This developed methodology will lead to identification of selenoproteins and a better understanding of the physiological role of these molecules in numerous living organisms.Le sĂ©lĂ©nium est un Ă©lĂ©ment trace connu pour son caractĂšre essentiel au dĂ©veloppement de nombreux organismes vivants mais Ă©galement pour ses effets bĂ©nĂ©fiques sur la santĂ© humaine. Les recherches effectuĂ©es ces cinq derniĂšres annĂ©es ont renforcĂ© l'idĂ©e que ces propriĂ©tĂ©s seraient dues Ă  la synthĂšse de sĂ©lĂ©noprotĂ©ines chez les ĂȘtres vivants. Les mĂ©thodes classiques d'analyse protĂ©omique ne sont pas adaptĂ©es Ă  l'identification ciblĂ©e de ces sĂ©lĂ©noprotĂ©ines trĂšs minoritaires. Les travaux de cette thĂšse ont consistĂ© Ă  dĂ©velopper des mĂ©thodes complĂ©mentaires plus spĂ©cifiques et sensibles en vue de leur dĂ©tection et de leur identification. Un Ă©talon protĂ©ique sĂ©lĂ©niĂ© stable a Ă©tĂ© produit pour dĂ©velopper ces mĂ©thodes. Le couplage de l'ablation laser et de la spectromĂ©trie de masse couplĂ©e Ă  un plasma induit (LA-ICP-MS) a Ă©tĂ© mis en oeuvre pour la dĂ©tection des sĂ©lĂ©noprotĂ©ines aprĂšs une sĂ©paration par Ă©lectrophorĂšse sur gel de polyacrylamide (PAGE). Le dispositif d'ablation laser conventionnel a ici Ă©tĂ© amĂ©liorĂ© avec un laser femtoseconde Ă  balayage trĂšs rapide permettant une dĂ©tection plus sensible des sĂ©lĂ©noprotĂ©ines dans les Ă©chantillons biologiques. Une fois dĂ©tectĂ©es, les sĂ©lĂ©noprotĂ©ines ont Ă©tĂ© identifiĂ©es en spectromĂ©trie de masse molĂ©culaire. Pour cela les sĂ©lĂ©nopeptides issus de la digestion enzymatique des sĂ©lĂ©noprotĂ©ines sont d'abord repĂ©rĂ©s en nanochromatographie couplĂ©e Ă  l'ICP-MS puis sĂ©quencĂ©s en nanochromatographie couplĂ©e Ă  la spectromĂ©trie de masse en tandem Ă  ionisation Ă©lectrospray (nanoHPLC-ESI-MS/MS). La procĂ©dure en LA-ICP-MS dĂ©veloppĂ©e a notamment permis la dĂ©tection de nouvelles sĂ©lĂ©noprotĂ©ines chez la bactĂ©rie Desulfococcus multivorans. La procĂ©dure d'identification a Ă©tĂ© validĂ©e sur deux sĂ©lĂ©noprotĂ©ines purifiĂ©es thiorĂ©doxine rĂ©ductase et glutathione peroxydase carboxymĂ©thylĂ©e. La mĂ©thodologie dĂ©veloppĂ©e contribuera Ă  l'identification de nouvelles sĂ©lĂ©noprotĂ©ines pour une meilleure comprĂ©hension des rĂŽles physiologiques de ces molĂ©cules chez de nombreux ĂȘtres vivants

    Détection et identification de sélénoprotéines par électrophorÚse sur gel associée aux spectrométries de masse atomique et moléculaire.

    No full text
    Le sĂ©lĂ©nium est un Ă©lĂ©ment trace connu pour son caractĂšre essentiel au dĂ©veloppement de nombreux organismes vivants mais Ă©galement pour ses effets bĂ©nĂ©fiques sur la santĂ© humaine. Les recherches effectuĂ©es ces cinq derniĂšres annĂ©es ont renforcĂ© l idĂ©e que ces propriĂ©tĂ©s seraient dues Ă  la synthĂšse de sĂ©lĂ©noprotĂ©ines chez les ĂȘtres vivants. Les mĂ©thodes classiques d analyse protĂ©omique ne sont pas adaptĂ©es Ă  l identification ciblĂ©e de ces sĂ©lĂ©noprotĂ©ines trĂšs minoritaires. Les travaux de cette thĂšse ont consistĂ© Ă  dĂ©velopper des mĂ©thodes complĂ©mentaires plus spĂ©cifiques et sensibles en vue de leur dĂ©tection et de leur identification. Un Ă©talon protĂ©ique sĂ©lĂ©niĂ© stable a Ă©tĂ© produit pour dĂ©velopper ces mĂ©thodes. Le couplage de l ablation laser et de la spectromĂ©trie de masse couplĂ©e Ă  un plasma induit (LA-ICP-MS) a Ă©tĂ© mis en oeuvre pour la dĂ©tection des sĂ©lĂ©noprotĂ©ines aprĂšs une sĂ©paration par Ă©lectrophorĂšse sur gel de polyacrylamide (PAGE). Le dispositif d ablation laser conventionnel a ici Ă©tĂ© amĂ©liorĂ© avec un laser femtoseconde Ă  balayage trĂšs rapide permettant une dĂ©tection plus sensible des sĂ©lĂ©noprotĂ©ines dans les Ă©chantillons biologiques. Une fois dĂ©tectĂ©es, les sĂ©lĂ©noprotĂ©ines ont Ă©tĂ© identifiĂ©es en spectromĂ©trie de masse molĂ©culaire. Pour cela les sĂ©lĂ©nopeptides issus de la digestion enzymatique des sĂ©lĂ©noprotĂ©ines sont d abord repĂ©rĂ©s en nanochromatographie couplĂ©e Ă  l ICP-MS puis sĂ©quencĂ©s en nanochromatographie couplĂ©e Ă  la spectromĂ©trie de masse en tandem Ă  ionisation Ă©lectrospray (nanoHPLC-ESI-MS/MS). La procĂ©dure en LA-ICP-MS dĂ©veloppĂ©e a notamment permis la dĂ©tection de nouvelles sĂ©lĂ©noprotĂ©ines chez la bactĂ©rie Desulfococcus multivorans. La procĂ©dure d identification a Ă©tĂ© validĂ©e sur deux sĂ©lĂ©noprotĂ©ines purifiĂ©es thiorĂ©doxine rĂ©ductase et glutathione peroxydase carboxymĂ©thylĂ©e. La mĂ©thodologie dĂ©veloppĂ©e contribuera Ă  l identification de nouvelles sĂ©lĂ©noprotĂ©ines pour une meilleure comprĂ©hension des rĂŽles physiologiques de ces molĂ©cules chez de nombreux ĂȘtres vivants.Selenium is a trace element known for its necessity in organisms development and its beneficial roles in human health. Research in the past five years strengthened the idea that these properties are largely due to the synthesis of selenoproteins in living organisms. Classical methods in proteomics are not adapted to identify minor selenoproteins. In this PhD work, more sensitive and more specific methods complementary to proteomics have been developed for their detection and identification. A stable selenized protein standard has been produced to develop these methods. The development of laser ablation - Inductively Coupled Plasma - Mass spectrometry coupling (LA-ICP-MS) lead to the detection of selenoproteins after separation by polyacrylamide gel electrophoresis (PAGE). Conventional device of laser ablation has been used and then improved with a new device using femtoseconde laser with ultrafast scanning for more sensitive detection of selenoproteins in biological samples. Once detected, selenoproteins have been identified by molecular mass spectrometry. For this purpose selenopeptids from enzymatic digestion of selenoproteins have been detected first by nanochromatography coupled to ICP-MS and sequenced then by means of by nanochromatography coupled to electrospray ionisation tandem mass spectrometry (nanoHPLC-ESI-MS/MS). LA-ICP-MS device has been successful for detection of new selenoproteins in Desulfococcus multivorans bacteria. This identification procedure has been validated on two purified selenoproteins thioredoxin reductase and carboxymathylated glutathion peroxidase. This developed methodology will lead to identification of selenoproteins and a better understanding of the physiological role of these molecules in numerous living organisms.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Development of a Standard Reference Material for Metabolomics Research

    Full text link
    The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health (NIH), has developed a Standard Reference Material (SRM) to support technology development in metabolomics research. SRM 1950 Metabolites in Human Plasma is intended to have metabolite concentrations that are representative of those found in adult human plasma. The plasma used in the preparation of SRM 1950 was collected from both male and female donors, and donor ethnicity targets were selected based upon the ethnic makeup of the U.S. population. Metabolomics research is diverse in terms of both instrumentation and scientific goals. This SRM was designed to apply broadly to the field, not towards specific applications. Therefore, concentrations of approximately 100 analytes, including amino acids, fatty acids, trace elements, vitamins, hormones, selenoproteins, clinical markers, and perfluorinated compounds (PFCs), were determined. Value assignment measurements were performed by NIST and the Centers for Disease Control and Prevention (CDC). SRM 1950 is the first reference material developed specifically for metabolomics research

    Development of a Standard Reference Material for Metabolomics Research

    No full text
    The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health (NIH), has developed a Standard Reference Material (SRM) to support technology development in metabolomics research. SRM 1950 Metabolites in Human Plasma is intended to have metabolite concentrations that are representative of those found in adult human plasma. The plasma used in the preparation of SRM 1950 was collected from both male and female donors, and donor ethnicity targets were selected based upon the ethnic makeup of the U.S. population. Metabolomics research is diverse in terms of both instrumentation and scientific goals. This SRM was designed to apply broadly to the field, not toward specific applications. Therefore, concentrations of approximately 100 analytes, including amino acids, fatty acids, trace elements, vitamins, hormones, selenoproteins, clinical markers, and perfluorinated compounds (PFCs), were determined. Value assignment measurements were performed by NIST and the Centers for Disease Control and Prevention (CDC). SRM 1950 is the first reference material developed specifically for metabolomics research
    corecore