3,874 research outputs found

    A Onelab model for the parametric study of mono-dimensional diffraction gratings

    Full text link
    This document aims at presenting both theoretical and practical aspects of the grating_2D Onelab model (available at http://onelab.info/wiki/Diffraction_grating). This model applies to so-called mono-dimensional grating, i.e. structures having one direction of invariance. Various geometries and materials can be handled or easily added. The two classical polarization cases, denoted here E// and H//, are addressed. The output consists in a full energy balance of the problem computed from the field maps. This model is based on free the GNU softwares Gmsh, GetDP and their interface Onelab.Comment: arXiv admin note: text overlap with arXiv:1302.103

    A Fast Algorithm for the Construction of Integrity Bases Associated to Symmetry-Adapted Polynomial Representations. Application to Tetrahedral XY4 Molecules

    Get PDF
    Invariant theory provides more efficient tools, such as Molien generating functions and integrity bases, than basic group theory, that relies on projector techniques for the construction of symmetry--adapted polynomials in the symmetry coordinates of a molecular system, because it is based on a finer description of the mathematical structure of the latter. The present article extends its use to the construction of polynomial bases which span possibly, non--totally symmetric irreducible representations of a molecular symmetry group. Electric or magnetic observables can carry such irreducible representations, a common example is given by the electric dipole moment surface. The elementary generating functions and their corresponding integrity bases, where both the initial and the final representations are irreducible, are the building blocks of the algorithm presented in this article, which is faster than algorithms based on projection operators only. The generating functions for the full initial representation of interest are built recursively from the elementary generating functions. Integrity bases which can be used to generate in the most economical way symmetry--adapted polynomial bases are constructed alongside in the same fashion. The method is illustrated in detail on XY4 type of molecules. Explicit integrity bases for all five possible final irreducible representations of the tetrahedral group have been calculated and are given in the supplemental material associated with this paper

    Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations

    Get PDF
    A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set

    How do interactive tabletop systems influence collaboration?

    Get PDF
    This paper examines some aspects of the usefulness of interactive tabletop systems, if and how these impact collaboration. We chose creative problem solving such as brainstorming as an application framework to test several collaborative media: the use of pen-and-paper tools, the ‘‘around-the-table’’ form factor, the digital tabletop interface, the attractiveness of interaction styles. Eighty subjects in total (20 groups of four members) participated in the experiments. The evaluation criteria were task performance, collaboration patterns (especially equity of contributions), and users’ subjective experience. The ‘‘aroundthe-table’’ form factor, which is hypothesized to promote social comparison, increased performance and improved collaboration through an increase of equity. Moreover, the attractiveness of the tabletop device improved subjective experience and increased motivation to engage in the task. However, designing attractiveness seems a highly challenging issue, since overly attractive interfaces may distract users from the task

    A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

    Full text link
    We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily implement various numerical algorithms.Two robust and optimised numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are implemented to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models

    Checkpointing algorithms and fault prediction

    Get PDF
    This paper deals with the impact of fault prediction techniques on checkpointing strategies. We extend the classical first-order analysis of Young and Daly in the presence of a fault prediction system, characterized by its recall and its precision. In this framework, we provide an optimal algorithm to decide when to take predictions into account, and we derive the optimal value of the checkpointing period. These results allow to analytically assess the key parameters that impact the performance of fault predictors at very large scale.Comment: Supported in part by ANR Rescue. Published in Journal of Parallel and Distributed Computing. arXiv admin note: text overlap with arXiv:1207.693
    • 

    corecore