1,520 research outputs found
H2 formation and excitation in the Stephan's Quintet galaxy-wide collision
Context. The Spitzer Space Telescope has detected a powerful (L(H2)~10^41 erg
s-1) mid-infrared H2 emission towards the galaxy-wide collision in the
Stephan's Quintet (SQ) galaxy group. This discovery was followed by the
detection of more distant H2-luminous extragalactic sources, with almost no
spectroscopic signatures of star formation. These observations set molecular
gas in a new context where one has to describe its role as a cooling agent of
energetic phases of galaxy evolution. Aims. The SQ postshock medium is observed
to be multiphase, with H2 gas coexisting with a hot (~ 5 10^6 K), X-ray
emitting plasma. The surface brightness of H2 lines exceeds that of the X-rays
and the 0-0 S(1) H2 linewidth is ~ 900 km s-1, of the same order of the
collision velocity. These observations raise three questions we propose to
answer: (i) Why H2 is present in the postshock gas ? (ii) How can we account
for the H2 excitation ? (iii) Why H2 is a dominant coolant ? Methods. We
consider the collision of two flows of multiphase dusty gas. Our model
quantifies the gas cooling, dust destruction, H2 formation and excitation in
the postshock medium. Results. (i) The shock velocity, the post-shock
temperature and the gas cooling timescale depend on the preshock gas density.
The collision velocity is the shock velocity in the low density volume filling
intercloud gas. This produces a ~ 5 10^6 K, dust-free, X-ray emitting plasma.
The shock velocity is smaller in clouds. We show that gas heated to
temperatures less than 10^6 K cools, keeps its dust content and becomes H2
within the SQ collision age (~ 5 10^6 years). (ii) Since the bulk kinetic
energy of the H2 gas is the dominant energy reservoir, we consider that the H2
emission is powered by the dissipation of kinetic turbulent energy. (Abridged)Comment: 19 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysics Minor editing and typo
H_2 formation and excitation in the Stephan's Quintet galaxy-wide collision
Context. The Spitzer Space Telescope has detected a powerful (L_(H_2) ~ 10^(41) erg s^(-1)) mid-infrared H_2 emission towards the galaxy-wide collision in the Stephan's Quintet (henceforth SQ) galaxy group. This discovery was followed by the detection of more distant H_2-luminous extragalactic sources, with almost no spectroscopic signatures of star formation. These observations place molecular gas in a new context where one has to describe its role as a cooling agent of energetic phases of galaxy evolution.
Aims. The SQ postshock medium is observed to be multiphase, with H_2 gas coexisting with a hot (~5 Ă 10^6 K), X-ray emitting plasma. The surface brightness of H_2 lines exceeds that of the X-rays and the 0-0 S(1)H_2 linewidth is ~900 kmâ s^(-1), of the order of the collision velocity. These observations raise three questions we propose to answer: (i) why is H_2 present in the postshock gas? (ii) How can we account for the H_2 excitation? (iii) Why is H_2 a dominant coolant?
Methods. We consider the collision of two flows of multiphase dusty gas. Our model quantifies the gas cooling, dust destruction, H_2 formation and excitation in the postshock medium.
Results. (i) The shock velocity, the post-shock temperature and the gas cooling timescale depend on the preshock gas density. The collision velocity is the shock velocity in the low density volume-filling intercloud gas. This produces a ~5 Ă 10^6 K, dust-free, X-ray emitting plasma. The shock velocity is lower in clouds. We show that gas heated to temperatures of less than 10^6 K cools, keeps its dust content and becomes H_2 within the SQ collision age (~5 Ă 10^6 years). (ii) Since the bulk kinetic energy of the H_2 gas is the dominant energy reservoir, we consider that the H_2 emission is powered by the dissipation of kinetic turbulent energy. We model this dissipation with non-dissociative MHD shocks and show that the H_2 excitation can be reproduced by a combination of low velocities shocks (5-20 km s^(-1)) within dense (n_H > 10^3 cm^(-3)) H_2 gas. (iii) An efficient transfer of the bulk kinetic energy to turbulent motion of much lower velocities within molecular gas is required to make H_2 a dominant coolant of the postshock gas. We argue that this transfer is mediated by the dynamic interaction between gas phases and the thermal instability of the cooling gas. We quantify the mass and energy cycling between gas phases required to balance the dissipation of energy through the H_2 emission lines.
Conclusions. This study provides a physical framework to interpret H_2 emission from H_2-luminous galaxies. It highlights the role that H_2 formation and cooling play in dissipating mechanical energy released in galaxy collisions. This physical framework is of general relevance for the interpretation of observational signatures, in particular H_2 emission, of mechanical energy dissipation in multiphase gas
Observations and modeling of the dust emission from the H_2-bright galaxy-wide shock in Stephan's Quintet
Context. Spitzer Space Telescope observations have detected powerful mid-infrared (mid-IR) H_2 rotational line emission from the X-ray emitting large-scale shock (~15 Ă 35âkpc^2) associated with a galaxy collision in Stephan's Quintet (SQ). Because H_2 forms on dust grains, the presence of H_2 is physically linked to the survival of dust, and we expect some dust emission to originate in the molecular gas.
Aims. To test this interpretation, IR observations and dust modeling are used to identify and characterize the thermal dust emission from the shocked molecular gas.
Methods. The spatial distribution of the IR emission allows us to isolate the faint PAH and dust continuum emission associated with the molecular gas in the SQ shock. We model the spectral energy distribution (SED) of this emission, and fit it to Spitzer observations. The radiation field is determined with GALEX UV, HST V-band, and ground-based near-IR observations. We consider two limiting cases for the structure of the H_2 gas: it is either diffuse and penetrated by UV radiation, or fragmented into clouds that are optically thick to UV.
Results. Faint PAH and dust continuum emission are detected in the SQ shock, outside star-forming regions. The 12/24 ÎŒm flux ratio in the shock is remarkably close to that of the diffuse Galactic interstellar medium, leading to a Galactic PAH/VSG abundance ratio. However, the properties of the shock inferred from the PAH emission spectrum differ from those of the Galaxy, which may be indicative of an enhanced fraction of large and neutrals PAHs. In both models (diffuse or clumpy H_2 gas), the IR SED is consistent with the expected emission from dust associated with the warm (> 150âK) H_2 gas, heated by a UV radiation field of intensity comparable to that of the solar neighborhood. This is in agreement with GALEX UV observations that show that the intensity of the radiation field in the shock is GUV = 1.4±0.2 [Habing units].
Conclusions. The presence of PAHs and dust grains in the high-speed (~1000âkm s^(-1)) galaxy collision suggests that dust survives. We propose that the dust that survived destruction was in pre-shock gas at densites higher than a few 0.1 cm^(-3), which was not shocked at velocities larger than ~200âkm s^(-1). Our model assumes a Galactic dust-to-gas mass ratio and size distribution, and current data do not allow us to identify any significant deviations of the abundances and size distribution of dust grains from those of the Galaxy. Our model calculations show that far-IR Herschel observations will help in constraining the structure of the molecular gas, and the dust size distribution, and thereby to look for signatures of dust processing in the SQ shock
Energetics of the molecular gas in the H_2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback
We present a detailed analysis of the gas conditions in the H_2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation
rate (SFR ~ 0.07 M_â yr^(â1)) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency
is likely a factor ~ 10â50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry
with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H_2 line emission is factors
10â100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of
3C 326 N in the optical suggests an outflow with a terminal velocity of ~â1800 km s^(â1) and a mass outflow rate of 30â40 M_â yr^(â1),
which cannot be explained by star formation. The mechanical power implied by the wind, of order 10^(43) erg s^(â1), is comparable to the
bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where
a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow,
and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times
are of order 10^(7â8) yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H_2
luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies
in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of
â„ 10^(11) M_â could generally be regulated through a fundamentally similar form of âmaintenance-phaseâ AGN feedback
Antecedents, Psychological Bonds to Multiple Targets and Outcomes: A qualitative Approach of their Links
Based on the re-conceptualization of the work commitment construct and on the notion of quondam commitment (Klein and al., 2012, 2014, 2017), this paper examines all the psychological bond types to multiple workplace targets, using a qualitative methodology approach. After providing a reminder of the theoretical background, the results of a case study, conducted in a major company, are presented. For that purpose, semi-structured interviews with 26 employees and the HR Manager were carried out and completed with a documentary analysis of the companyâs website and corporate documents. A manual content analysis has been processed, using the NVivo software. The results show how complex and multifaceted the links between antecedents, psychological bonds towards different targets and their attitudinal/behavioural consequences are and provide a better understanding of the process model of commitment development or loss. Finally, we discuss key theoretical and managerial implications of our study
Low Mach number effect in simulation of high Mach number flow
In this note, we relate the two well-known difficulties of Godunov schemes:
the carbuncle phenomena in simulating high Mach number flow, and the inaccurate
pressure profile in simulating low Mach number flow. We introduced two simple
low-Mach-number modifications for the classical Roe flux to decrease the
difference between the acoustic and advection contributions of the numerical
dissipation. While the first modification increases the local numerical
dissipation, the second decreases it. The numerical tests on the double-Mach
reflection problem show that both modifications eliminate the kinked Mach stem
suffered by the original flux. These results suggest that, other than
insufficient numerical dissipation near the shock front, the carbuncle
phenomena is strongly relevant to the non-comparable acoustic and advection
contributions of the numerical dissipation produced by Godunov schemes due to
the low Mach number effect.Comment: 9 pages, 1 figur
Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation
We present an in depth study on the evolution of galaxy properties in compact
groups over the past 3 Gyr. We are using the largest multi-wavelength sample
to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift
range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely
on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using
CIGALE. Our results suggest that during the 3 Gyr period covered by our sample,
the star formation activity of galaxies in our groups has been substantially
reduced (3-10 times). Moreover, their star formation histories as well as their
UV-optical and mid-infrared colors are significantly different from those of
field and cluster galaxies, indicating that compact group galaxies spend more
time transitioning through the green valley. The morphological transformation
from late-type spirals into early-type galaxies occurs in the mid-infrared
transition zone rather than in the UV-optical green valley. We find evidence of
shocks in the emission line ratios and gas velocity dispersions of the
late-type galaxies located below the star forming main sequence. Our results
suggest that in addition to gas stripping, turbulence and shocks might play an
important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18,
2015
- âŠ