50 research outputs found

    The 129-iodine content of subtropical Pacific waters : impact of Fukushima and other anthropogenic 129-iodine sources

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 4839-4852, doi:10.5194/bg-11-4839-2014.Results obtained from a dedicated radiochemistry cruise approximately 100 days after the 11 March 2011 Tohoku earthquake and subsequent disaster at the Fukushima Daiichi Nuclear Power Plant show that Fukushima derived radionuclides in the nearby ocean environment had penetrated, on average, to ≤250 m depth (1026.5 kg m3 potential density surface). The excess inventory of Fukushima-derived 129I in the region (∼150 000 km2) sampled during the cruise is estimated to have been between 0.89 and 1.173 billion Bq (∼136 to ∼179 grams) of 129I. Based on a tight tracer–tracer relation with 134Cs (or 137Cs) and estimates that most of the excess cesium is due to direct discharge, we infer that much of the excess 129I is from direct (non-atmospheric deposition) discharge. After taking into account oceanic transport, we estimate the direct discharge, i.e., that directly released into the ocean, off Fukushima to have been ∼1 kg 129I. Although this small pulse is dwarfed by the ~90 kg of weapons-testing-derived 129I that was released into the environment in the late 1950s and early 1960s, it should be possible to use Fukushima-derived 129I and other radionuclides (e.g., 134, 137Cs) to study transport and entrainment processes along and across the Kuroshio Current.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344

    SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP

    Get PDF
    The Southern Hemisphere SHCal04 radiocarbon calibration curve has been updated with the addition of new data sets extending measurements to 2145 cal BP and including the ANSTO Younger Dryas Huon pine data set. Outside the range of measured data, the curve is based upon the Northern Hemisphere data sets as presented in IntCal13, with an interhemispheric offset averaging 43 ± 23 yr modeled by an autoregressive process to represent the short-term correlations in the offset

    Reproducibility of Ba/Ca variations recorded by northeast Pacific bamboo corals

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 966–979, doi:10.1002/2017PA003178.Trace elemental ratios preserved in the calcitic skeleton of bamboo corals have been shown to serve as archives of past ocean conditions. The concentration of dissolved barium (BaSW), a bioactive nutrientlike element, is linked to biogeochemical processes such as the cycling and export of nutrients. Recent work has calibrated bamboo coral Ba/Ca, a new BaSW proxy, using corals spanning the oxygen minimum zone beneath the California Current System. However, it was previously unclear whether Ba/Cacoral records were internally reproducible. Here we investigate the accuracy of using laser ablation inductively coupled plasma mass spectrometry for Ba/Cacoral analyses and test the internal reproducibility of Ba/Ca among replicate radial transects in the calcite of nine bamboo corals collected from the Gulf of Alaska (643–720 m) and the California margin (870–2054 m). Data from replicate Ba/Ca transects were aligned using visible growth bands to account for nonconcentric growth; smoothed data were reproducible within ~4% for eight corals (n = 3 radii/coral). This intracoral reproducibility further validates using bamboo coral Ba/Ca for BaSW reconstructions. Sections of the Ba/Ca records that were potentially influenced by noncarbonate bound Ba phases occurred in regions where elevated Mg/Ca or Pb/Ca and coincided with anomalous regions on photomicrographs. After removing these regions of the records, increased Ba/Cacoral variability was evident in corals between ~800 and 1500 m. These findings support additional proxy validation to understand BaSW variability on interannual timescales, which could lead to new insights into deep sea biogeochemistry over the past several centuries.NSF Grant Number: OCE-1420984; NOAA/OE Grant Number: NA16RP2637; MIT-WHOI Joint Program; American Geophysical Union Travel Grant; UC Davis President's Undergraduate Fellowship; Bowdoin College Gibbons Summer Research Fellowship2018-03-1

    IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000yeats cal BP

    Get PDF
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org

    IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP

    Get PDF
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0-12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeye

    NotCal04; comparison/ calibration 14C records 26-50 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1225-1238.The radiocarbon calibration curve IntCal04 extends back to 26 cal kyr BP. While several high-resolution records exist beyond this limit, these data sets exhibit discrepancies of up to several millennia. As a result, no calibration curve for the time range 26–50 cal kyr BP can be recommended as yet, but in this paper the IntCal04 working group compares the available data sets and offers a discussion of the information that they hold
    corecore