24 research outputs found

    Zero-valent iron-copper bimetallic catalyst supported on graphite from spent lithium-ion battery anodes and mill scale waste for the degradation of 4-chlorophenol in aqueous phase

    Full text link
    Graphite supported zero-valent iron-copper bimetallic catalysts (ZVI-Cu/C) were successfully prepared from mill scale (MS) waste and spent lithium-ion battery (LIB) anode using carbothermic reduction as a new approach for the recycling and revalorization of these waste. Cu and graphite were obtained from the LIB anodes, while ZVI was provided by MS waste. ZVI-Cu/C were synthesized with different MS to LIB anode powers mass ratios (1 to 4) and used as catalysts for the degradation of 4-chlorophenol (4-CP) in water by both reduction and heterogeneous Fenton reactions. ZVI-Cu/C-2 showed the highest removal percentage of 4-CP in both reactions. The degradation rates fitted well to a pseudo first-order model for both reactions. Moreover, ZVI-Cu/C-2 catalyst showed a relatively low lixiviation of iron and copper ions and a high activity in the 4-CP removal even in the fourth reuse cycle, which supports the high stability of the synthesized catalyst. Hydroquinone and 4-chlorocatechol were identified as the main intermediate by-products of 4-CP degradation. The results of this study support the possibility of synthesizing high active and stable ZVI-Cu/C catalysts using graphite and copper from spent LIB anode and iron oxide from MS waste. These catalysts show promising prospective for the removal of 4-CP in water, with comparable activities to others previously reported. This study reports, for the first time, the combined recycling of MS waste and spent LIB anodes to synthesize ZVI-Cu/C catalysts for water treatment by both oxidation and reduction reactionsThis work was supported by China Scholarship Council (202008310005), National Natural Science Foundation of China (52070127), Science and Technology Commission of Shanghai Municipality (21WZ2501500

    Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently

    Synthesis of nanoscale zero-valent iron doped carbonized zeolitic imidazolate framework-8 for methylene blue removal in water

    No full text
    Nanoscale zero-valent iron-doped carbonized zeolitic imidazolate framework-8 (nZVI/CZIF-8) was prepared by carbonation of ferric nitrate and ZIF-8 at 800 °C and used as an adsorbent to remove methylene blue (MB) from water. The synthesized nZVI/CZIF-8 has a specific surface area of 806.9 m2/g, a pore volume of 0.86 cm3/g and an nZVI content of 1.35%, respectively. Both the nZVI/CZIF-8 and CZIF-8 have identical functional groups of O-H, C-H and C=C. With the increase of CZIF-8 size, MB removal rate increased. The doping of nZVI increased the MB removal percentage from 74.5% for ZIF-8 to 96.2% within 80 min for nZVI/CZIF-8. The MB removal percentage increased with the dosage of nZVI/CZIF-8. The MB adsorption with the adsorbents conforms to the Freundlich adsorption isothermal model and the removal rate fitted well to a pseudo-first-order model. The results demonstrate the feasibility of synthesizing high active and stable nZVI/CZIF-8 particles

    CHST7 Methylation Status Related to the Proliferation and Differentiation of Pituitary Adenomas

    No full text
    Pituitary adenomas (PAs) are the second most common primary brain tumor and may develop from any of the cell lineages responsible for producing the different pituitary hormones. DNA methylation is one of the essential epigenetic mechanisms in cancers, including PAs. In this study, we measured the expression profile and promoter methylation status of carbohydrate sulfotransferase 7 (CHST7) in patients with PA; then, we investigated the effect of the CHST7 methylation status on the proliferation and differentiation of PAs. The volcano map and Metascape results showed that the levels of CHST7 were related to the lineages’ differentiation and the cell adhesion of PAs, and patients with low CHST7 had greater chances of having an SF-1 lineage (p = 0.002) and optic chiasm compression (p = 0.007). Reactome pathway analysis revealed that most of the DEGs involved in the regulation of TP53 regulated the transcription of cell cycle genes (HSA-6791312 and HSA6804116) in patients with high CHST7. Correlation analysis showed that CHST7 was significantly correlated with the eIF2/ATF4 pathway and mitochondrion-related genes. The AUC of ROC showed that CHST7 (0.288; 95% CI: 0.187–0.388) was superior to SF-1 (0.555; 95% CI: 0.440–0.671) and inferior to FSHB (0.804; 95% CI: 0.704–0.903) in forecasting the SF-1 lineage (p < 0.001). The SF-1 lineage showed a higher methylation frequency for CHST7 than the Pit-1 and TBX19 lineages (p = 0.009). Furthermore, as the key molecule of the hypothalamic–pituitary–gonadal axis, inhibin βE (INHBE) was positively correlated with the levels of CHST7 (r = 0.685, p < 0.001). In summary, CHST7 is a novel pituitary gland specific protein in SF-1 lineage adenomas with a potential role in gonadotroph cell proliferation and lineage differentiation in PAs

    Generation of Retinal Organoids with Mature Rods and Cones from Urine-Derived Human Induced Pluripotent Stem Cells

    No full text
    Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo. More importantly, U-hiPSCs generated highly mature photoreceptors with all subtypes, even red/green cone-rich photoreceptors. Our data indicated that a supplement of RA to culture medium was not necessary for maturation and specification of U-hiPSC-derived photoreceptors at least in the niche of retinal organoids. The success of retinal differentiation with U-hiPSCs provides many opportunities in cell therapy, disease modeling, and drug screening, especially in personalized medicine of retinal diseases since urine cells can be noninvasively collected from patients and their relatives

    Synthesis of the chiral intermediate of batzelladines A and B

    No full text
    <p></p> <p>The title compound (<i>S, Z</i>)-methyl 2-[3-(tert-butyldimethylsilyloxy)pyrrolidin-2-ylidene]acetate(<b>6</b>) has been stereoselectively synthesized by the Reformatsky coupling reaction, and the absolute configuration of <b>6</b> was determined by<sup>1</sup>H NMRand single-crystal X-ray diffraction.</p

    Practical Experience of Endoscope Reprocessing and Working-Platform Disinfection in COVID-19 Patients: A Report from Guangdong China during the Pandemic

    No full text
    Background. No consensus exists regarding which procedures should be performed to disinfect endoscopes and working platforms after COVID-19 patients have undergone endoscopy. Methods. We analyzed the disinfection quality of endoscopes and working platforms after 11 COVID-19 patients had undergone endoscopy. Conclusions. For endoscopic preprocessing at the bedside, a key disinfection step is using a multienzyme stock solution. The nucleic acid tests for endoscopists, washers, endoscopes, and working platforms were all negative. Based on our experience with the 11 COVID-19 patients who had undergone endoscopy, we provide an endoscopic reprocessing method for the bedside endoscopic diagnosis and treatment of COVID-19 patients for reference
    corecore