62 research outputs found

    Direct Signal Detection Without Data‐Aided: A MIMO Functional Network Approach

    Get PDF
    Functional network (FN) has been successfully applied in many fields, but so far no methods of direct signal detection (DSD) using FN have been published. In this chapter, a novel DSD approach using FN, which can be applied to cases with a plural source signal sequence, with short sequence, and even with the absence of a training sequence, is presented. Firstly, a multiple‐input multiple‐output FN (MIMOFN), in which the initial input vector is devised via QR decomposition of the receiving signal matrix, is constructed to solve the special issues of DSD. In the meantime, the design method for the neural function of this special MIMOFN is proposed. Then the learning rule for the parameters of neural functions is trained and updated by back‐propagation (BP) algorithm. The correctness and effectiveness of the new approach are verified by simulation results, together with some special simulation phenomena of the algorithm. The proposed method can detect the source sequence directly from the observed output data by utilizing MIMOFN without a training sequence and estimating the channel impulse response

    HCV 6a Prevalence in Guangdong Province Had the Origin from Vietnam and Recent Dissemination to Other Regions of China: Phylogeographic Analyses

    Get PDF
    Recently in China, HCV 6a infection has shown a fast increase among patients and blood donors, possibly due to IDU linked transmission.We recruited 210 drug users in Shanwei city, Guangdong province. Among them, HCV RNA was detected in 150 (71.4%), both E1 and NS5B genes were sequenced in 136, and 6a genotyped in 70. Of the 6a sequences, most were grouped into three clusters while 23% represent emerging strains. For coalescent analysis, additional 6a sequences were determined among 21 blood donors from Vietnam, 22 donors from 12 provinces of China, and 36 IDUs from Liuzhou City in Guangxi Province. Phylogeographic analyses indicated that Vietnam could be the origin of 6a in China. The Guangxi Province, which borders Vietnam, could be the first region to accept 6a for circulation. Migration from Yunnan, which also borders Vietnam, might be equally important, but it was only detected among IDUs in limited regions. From Guangxi, 6a could have further spread to Guangdong, Yunnan, Hainan, and Hubei provinces. However, evidence showed that only in Guangdong has 6a become a local epidemic, making Guangdong the second source region to disseminate 6a to the other 12 provinces. With a rate of 2.737×10⁻³ (95% CI: 1.792×10⁻³ to 3.745×10⁻³), a Bayesian Skyline Plot was portrayed. It revealed an exponential 6a growth during 1994-1998, while before and after 1994-1998 slow 6a growths were maintained. Concurrently, 1994-1998 corresponded to a period when contaminated blood transfusion was common, which caused many people being infected with HIV and HCV, until the Chinese government outlawed the use of paid blood donations in 1998.With an origin from Vietnam, 6a has become a local epidemic in Guangdong Province, where an increasing prevalence has subsequently led to 6a spread to many other regions of China

    Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes

    Get PDF
    Plastics have been accumulated offshore and in the deep oceans at an unprecedented scale. Microbial communities have colonized the plastisphere, which has become a reservoir for both antibiotic and metal resistance genes (ARGs and MRGs). This is the first analysis of the diversity, abundance, and co-occurrence of ARGs and MRGs, and their relationships within the microbial community, using metagenomic data of plastic particles observed in the North Pacific Gyre obtained from the National Centre for Biotechnology Information Sequence Read Archive database. The abundance of ARGs and MRGs in microbial communities on the plastics were in the ranges 7.07 x 10(-4)-1.21 x 10(-2) and 5.51 x 10(-3)-4.82 x 10(-2) copies per 16S rRNA, respectively. Both the Shannon-Wiener indices and richness of ARGs and MRGs in plastics microbiota were significantly greater than those of ARGs and MRGs in seawater microbiota in the North Pacific Gyre via one-way analysis of variance. Multidrug resistance genes and multi-metal resistance genes were the main classes of genes detected in plastic microbiota. There were no significant differences in the abundance or diversity of ARGs and MRGs between macroplastics biota and microplastics biota, indicating that particle size had no effect on resistance genes. Procrustes analysis suggested that microbial community composition was the determining factor of the ARG profile but not for MRG. Some ARGs and MRGs had a higher incidence of non-random co-occurrence, suggesting that the co-effects of selection for antibiotic or metal resistance are important factors influencing the resistome of the microbiota on the plastic particles

    Identification of Transcription Factor Networks during Mouse Hindlimb Development

    No full text
    Mammalian hindlimb development involves a variety of cells and the regulation of spatiotemporal molecular events, but regulatory networks of transcription factors contributing to hindlimb morphogenesis are not well understood. Here, we identified transcription factor networks during mouse hindlimb morphology establishment through transcriptome analysis. We used four stages of embryonic hindlimb transcription profiles acquired from the Gene Expression Omnibus database (GSE30138), including E10.5, E11.5, E12.5 and E13.5, to construct a gene network using Weighted Gene Co-expression Network Analysis (WGCNA), and defined seven stage-associated modules. After filtering 7625 hub genes, we further prioritized 555 transcription factors with AnimalTFDB3.0. Gene ontology enrichment showed that transcription factors of different modules were enriched in muscle tissue development, connective tissue development, embryonic organ development, skeletal system morphogenesis, pattern specification process and urogenital system development separately. Six regulatory networks were constructed with key transcription factors, which contribute to the development of different tissues. Knockdown of four transcription factors from regulatory networks, including Sox9, Twist1, Snai2 and Klf4, showed that the expression of limb-development-related genes was also inhibited, which indicated the crucial role of transcription factor networks in hindlimb development

    Identification of Transcription Factor Networks during Mouse Hindlimb Development

    No full text
    Mammalian hindlimb development involves a variety of cells and the regulation of spatiotemporal molecular events, but regulatory networks of transcription factors contributing to hindlimb morphogenesis are not well understood. Here, we identified transcription factor networks during mouse hindlimb morphology establishment through transcriptome analysis. We used four stages of embryonic hindlimb transcription profiles acquired from the Gene Expression Omnibus database (GSE30138), including E10.5, E11.5, E12.5 and E13.5, to construct a gene network using Weighted Gene Co-expression Network Analysis (WGCNA), and defined seven stage-associated modules. After filtering 7625 hub genes, we further prioritized 555 transcription factors with AnimalTFDB3.0. Gene ontology enrichment showed that transcription factors of different modules were enriched in muscle tissue development, connective tissue development, embryonic organ development, skeletal system morphogenesis, pattern specification process and urogenital system development separately. Six regulatory networks were constructed with key transcription factors, which contribute to the development of different tissues. Knockdown of four transcription factors from regulatory networks, including Sox9, Twist1, Snai2 and Klf4, showed that the expression of limb-development-related genes was also inhibited, which indicated the crucial role of transcription factor networks in hindlimb development

    Weak signal extraction in non-stationary channel with weak measurement

    No full text
    Abstract An emerging challenge of integrated communication and sensing is the extraction of weak sensing signals transmitted through an unknown non-stationary channel. In this work, we propose a weak signal extraction method with weak measurement. Taking advantage of time division multiplexing, we preliminarily estimate the channel via adjustable finite impulse response filter, further suppressing the interfering signal caused by background noises via spectrum shift. By subsequently using the time-varying phase estimation method via weak measurement, the real-time detection of weak signals in the non-stationary channel is achieved. We demonstrate via theoretical analysis and confirmatory experiment that our method is able to amplify the phase shift, to suppress technical noise and to improve detection resolution limit, while proving robust against light source fluctuations, initial phase differences and detector saturation. The method hence enables weak sensing signal extraction with a low signal-to-noise ratio non-stationary channel. Furthermore, we interface our measurement method to squeezed light sources, offering the possibility of surpassing standard quantum limit
    corecore