25 research outputs found
Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation.
The vascular endothelium is critical for induction of appropriate lineage differentiation in organogenesis. In this study, we report that dysfunctional pulmonary endothelium, resulting from the loss of matrix Gla protein (MGP), causes ectopic hepatic differentiation in the pulmonary epithelium. We demonstrate uncontrolled induction of the hepatic growth factor (HGF) caused by dysregulated cross talk between pulmonary endothelium and epithelium in Mgp-null lungs. Elevated HGF induced hepatocyte nuclear factor 4 α (Hnf4a), which competed with NK2 homeobox 1 (Nkx2.1) for binding to forkhead box A2 (Foxa2) to drive hepatic differentiation in Mgp-null airway progenitor cells. Limiting endothelial HGF reduced Hnf4a, abolished interference of Hnf4a with Foxa2, and reduced hepatic differentiation in Mgp-null lungs. Together, our results suggest that endothelial-epithelial interactions, maintained by MGP, are essential in pulmonary cell differentiation
Recommended from our members
Angiopoietin-2 predicts morbidity in adults with Fontan physiology.
Morbidity in patients with single-ventricle Fontan circulation is common and includes arrhythmias, edema, and pulmonary arteriovenous malformations (PAVM) among others. We sought to identify biomarkers that may predict such complications. Twenty-five patients with Fontan physiology and 12 control patients with atrial septal defects (ASD) that underwent cardiac catheterization were included. Plasma was collected from the hepatic vein and superior vena cava and underwent protein profiling for a panel of 20 analytes involved in angiogenesis and endothelial dysfunction. Ten (40%) of Fontan patients had evidence of PAVM, eighteen (72%) had a history of arrhythmia, and five (20%) were actively in arrhythmia or had a recent arrhythmia. Angiopoietin-2 (Ang-2) was higher in Fontan patients (8,875.4 ± 3,336.9 pg/mL) versus the ASD group (1,663.6 ± 587.3 pg/mL, p < 0.0001). Ang-2 was higher in Fontan patients with active or recent arrhythmia (11,396.0 ± 3,457.7 vs 8,118.2 ± 2,795.1 pg/mL, p < 0.05). A threshold of 8,500 pg/mL gives Ang-2 a negative predictive value of 100% and positive predictive value of 42% in diagnosing recent arrhythmia. Ang-2 is elevated among adults with Fontan physiology. Ang-2 level is associated with active or recent arrhythmia, but was not found to be associated with PAVM
Recommended from our members
Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration
Introduction: Murine models provide microvascular insights into the 3-D network disarray seen in retinopathy and cardiovascular diseases. Light-sheet fluorescence microscopy (LSFM) has emerged to capture retinal vasculature in 3-D, allowing for assessment of the progression of retinopathy and the potential to screen new therapeutic targets in mice. We hereby coupled LSFM, also known as selective plane illumination microscopy, with topological quantification, to characterize the retinal vascular plexuses undergoing preferential obliteration.
Method and Result: In postnatal mice, we revealed the 3-D retinal microvascular network in which the vertical sprouts bridge the primary (inner) and secondary (outer) plexuses, whereas, in an oxygen-induced retinopathy (OIR) mouse model, we demonstrated preferential obliteration of the secondary plexus and bridging vessels with a relatively unscathed primary plexus. Using clustering coefficients and Euler numbers, we computed the local versus global vascular connectivity. While local connectivity was preserved (p > 0.05, n = 5 vs. normoxia), the global vascular connectivity in hyperoxia-exposed retinas was significantly reduced (p < 0.05, n = 5 vs. normoxia). Applying principal component analysis (PCA) for auto-segmentation of the vertical sprouts, we corroborated the obliteration of the vertical sprouts bridging the secondary plexuses, as evidenced by impaired vascular branching and connectivity, and reduction in vessel volumes and lengths (p < 0.05, n = 5 vs. normoxia).
Conclusion: Coupling 3-D LSFM with topological quantification uncovered the retinal vasculature undergoing hyperoxia-induced obliteration from the secondary (outer) plexus to the vertical sprouts. The use of clustering coefficients, Euler's number, and PCA provided new network insights into OIR-associated vascular obliteration, with translational significance for investigating therapeutic interventions to prevent visual impairment
ERK1 Regulates the Hematopoietic Stem Cell Niches
The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1−/− HSC are impaired, suggesting that the ERK1−/−-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1−/− defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments
Endothelial-mesenchymal transition in atherosclerotic lesion calcification
Background and aimsEndothelial-mesenchymal transitions (EndMTs) in endothelial cells (ECs) contribute to vascular disease.MethodsWe used ApoE-/- mice fed a high-fat/high-cholesterol diet.ResultsWe reported evidence of EndMT in atherosclerotic lesions contributing to calcification. Stem cell and mesenchymal markers, including sex-determining region Y-box 2 (Sox2), were upregulated in aortic ECs of fat-fed ApoE-/- mice. Limiting Sox2 decreased marker expression and calcification in ApoE-/- aortas. Furthermore, a complex of serine proteases was upregulated in ApoE-/- aortic ECs. Blockade of these proteases reduced expression of Sox2 and atherosclerotic lesion calcification.ConclusionsTogether, our data suggest that EndMTs contribute to atherosclerotic lesion calcification
Modèles géométriques de croissance du cerveau, cervelet, tronc cérébral et modification des angles de la base du crâne au cours de la période fœtale
International audienc
Recommended from our members
Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice.
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal development and disease processes. Here, we report that EndMTs occur in the diabetic endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and increased vascular calcification. We also find an induction of a complex of serine proteases in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that EndMTs contribute to vascular calcification in diabetic arteries
ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney
Mutations in ABCC6 (ATP‐binding cassette, subfamily C, member 6), an orphan transporter expressed in the liver, are the cause of pseudoxanthoma elasticum. Since ABCC6 was reported to affect matrix Gla protein (MGP), an inhibitor of bone morphogenetic proteins (BMPs), we studied BMP signaling and expression in various tissues of mice with and without functional ABCC. Enhanced BMP signaling was found in all examined tissues in the absence of ABCC6. Despite this, the expression of particular BMP proteins varied widely between tissues. Interestingly, the expression of most BMP proteins in the liver moved in the opposite direction to the same BMP proteins in kidneys in response to ABCC6 alterations. Thus, ABCC6 deficiency stimulates BMP signaling by acting on the expression of multiple BMPs
Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice.
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal development and disease processes. Here, we report that EndMTs occur in the diabetic endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and increased vascular calcification. We also find an induction of a complex of serine proteases in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that EndMTs contribute to vascular calcification in diabetic arteries