147 research outputs found

    Textured BST Thin Film on Silicon Substrate: Preparation and Its Applications for High Frequency Tunable Devices

    Get PDF
    The dielectric properties of Ba0.5Sr0.5TiO3 (BST) thin films are sensitive to the relative crystallographic orientation of the films. LaNiO3 (LNO) and MgO were deposited as buffer layer on Si substrate before BST. The effect of buffer layer such as LNO, MgO and MgO/LNO bilayer on the microstructure and dielectric properties of BST were extensively investigated. The preferred (100) orientation of LNO by radio frequency (RF) magnetron sputtering was dominated by the substrate temperature and highly (100)-oriented LNO thin films were grown on Si substrates at 300°C. The oriented (100) growth of sputtered BST thin films was strongly affected by the orientation of LNO thin films and the tunability of BST thin film was greatly improved with the insertion of (100)-textured LNO buffer layer. In addition, MgO, as a buffer layer, was deposited by RF magnetron sputtering. The results show that the crystallization of BST was also enhanced by the insertion of MgO buffer layer, which enhances the oriental growth of BST along (100). Also, the tunability of the BST thin films was improved and the dielectric loss greatly decreased. Finally, CPW with BST/MgO multilayer was fabricated and the scattering (S) parameters were tested

    Phased-Array Radar System Simulator (PASIM): Development and Simulation Result Assessment

    Get PDF
    In this paper, a system-specific phased-array radar system simulator was developed, based on a time-domain modeling and simulation method, mainly for system performance evaluation of the future Spectrum-Efficient National Surveillance Radar (SENSR). The goal of the simulation study was to establish a complete data quality prediction method based on specific radar hardware and electronics designs. The distributed weather targets were modeled using a covariance matrix-based method. The data quality analysis was conducted using Next-Generation Radar (NEXRAD) Level-II data as a basis, in which the impact of various pulse compression waveforms and channel electronic instability on weather radar data quality was evaluated. Two typical weather scenarios were employed to assess the simulator’s performance, including a tornado case and a convective precipitation case. Also, modeling of some demonstration systems was evaluated, including a generic weather radar, a planar polarimetric phased-array radar, and a cylindrical polarimetric phased-array radar. Corresponding error statistics were provided to help multifunction phased-array radar (MPAR) designers perform trade-off studies.Funding: The work was supported by NOAA/NSSL through Grant # NA16OAR4320115.A Open access fees fees for this article provided whole or in part by OU Libraries Open Access Fund. Acknowledgments: We thank Ramesh Nepal from the Intelligent Aerospace Radar Team (IART) of School of Electrical and Computer Engineering, the University of Oklahoma as the initial user of the MATLAB Phased-Array System Toolbox for weather radar simulations at OU, who gave numerous discussions regarding PASIM implementation. We deeply thank Honglei Chen from MathWorks Inc., who provided important guidance and support to the weather radar signal statistical modeling and MATLAB tool.Ye

    Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System

    Get PDF
    DC traction power system with running rails as reflux conductor has been adopted in Guangzhou Metro Line 8. During the operation of the Guangzhou Metro Line, a high rail potential has been observed, and the leakage of stray current increases significantly. Because of the electrical connectivity of the catenary, over zone feeding of traction current may exist when multiple trains run in multiple traction substations. Guangzhou Metro Line 8 suspects that over zone feeding of traction current is the major cause of the high rail potential. In this paper, a unified chain model of DC traction power system is proposed to simulate the distribution of rail potential and stray current. Field tests and simulations have been carried out to study whether over zone feeding has an impact on rail potential and stray current. Results show that over zone feeding widely exists in DC traction power system and that the rail potential and stray current can be reduced effectively by preventing the over zone feeding of traction current

    CBS promoter hypermethylation increases the risk of hypertension and stroke

    Get PDF
    OBJECTIVES: Cystathionine β-synthase is a major enzyme in the metabolism of plasma homocysteine. Hyperhomocysteinemia is positively associated with hypertension and stroke. The present study was performed to examine the possible effects of Cystathionine β-synthase promoter methylation on the development of hypertension and stroke. METHODS: Using quantitative methylation-specific PCR, we determined the Cystathionine β-synthase methylation levels in 218 healthy individuals and 132 and 243 age- and gender-matched stroke and hypertensive patients, respectively. The relative changes in Cystathionine β-synthase promoter methylation were analyzed using the 2- ΔΔCt method. The percent of the methylated reference of Cystathionine β-synthase was used to represent the Cystathionine β-synthase promoter methylation levels. RESULTS: In this study, the Cystathionine β-synthase promoter methylation levels of hypertensive and stroke participants were both higher than that of the healthy individuals (median percentages of the methylated reference were 50.61%, 38.05% and 30.53%, respectively, all p<0.001). Multivariable analysis showed that Cystathionine β-synthase promoter hypermethylation increased the risk of hypertension [odds ratio, OR (95% confidence interval, CI)=1.035 (1.025–1.045)] and stroke [OR (95% CI)=1.015 (1.003–1.028)]. The area under the curve of Cystathionine β-synthase promoter methylation was 0.844 (95% CI: 0.796–0.892) in male patients with hypertension and 0.722 (95% CI: 0.653–0.799) in male patients with stroke. CONCLUSION: Cystathionine β-synthase promoter hypermethylation increases the risk of hypertension and stroke, especially in male patients

    A β-cyclodextrin modified graphitic carbon nitride with Au co-catalyst for efficient photocatalytic hydrogen peroxide production

    Get PDF
    Photocatalytic hydrogen peroxide (H2O2) production has attracted considerable attention as a renewable and environment-friendly method to replace other traditional production techniques. The performance of H2O2 production remains limited by the inertness of graphitic carbon nitride (CN) towards the adsorption and activation of O2. In this work, a photocatalyst comprising of β-cyclodextrin (β-CD)-modified CN with supporting Au co-catalyst (Au/β-CD-CN) has been utilized for effective H2O2 production under visible light irradiation. The static contact angle measurement suggested that β-CD modification increased the hydrophobicity of the CN photocatalyst as well as its affinity to oxygen gas, leading to an increase in H2O2 production. The rate of H2O2 production reached more than 0.1 mM/h under visible-light irradiation. The electron spin resonance spectra indicated that H2O2 was directly formed via a 2-electron oxygen reduction reaction (ORR) over the Au/β-CD-CN photocatalyst

    Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number

    Get PDF
    The cyclomatic number, denoted by γ \gamma , of a graph G G is the minimum number of edges of G G whose removal makes G G acyclic. Let Gnγ \mathscr{G}_{n}^{\gamma} be the class of all connected graphs with order n n and cyclomatic number γ \gamma . In this paper, we characterized the graphs in Gnγ \mathscr{G}_{n}^{\gamma} with minimum general Randić index for γ≥3 \gamma\geq 3 and 1≤α≤3925 1\leq\alpha\leq \frac{39}{25} . These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of Gnγ \mathscr{G}_{n}^{\gamma} with maximum general Randić index were also completely determined for γ≥3 \gamma\geq 3 and α≥1 \alpha\geq 1

    Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2

    Get PDF
    Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise single electron oxygen reduction reaction (ORR) for Au and SnO2 modified TiO2 photocatalysts. We demonstrate that it is feasible to enhance H2O2 formation and suppress H2O2 decomposition by surface passivation of the H2O2-decomposition-sensitive photocatalysts
    • …
    corecore