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Abstract In this contribution, we first investigate sharp bounds for the reciprocal
sum-degree distance of graphs with a given matching number. The corresponding
extremal graphs are characterized completely. Then we explore the k-decomposition
for the reciprocal sum-degree distance. Finally,we establish formulas for the reciprocal
sum-degree distance of join and the Cartesian product of graphs.
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1 Introduction

Throughout the paper, we consider finite undirected simple connected graphs. Let
G = (V, E) be a graph, we denote simply the order and size with |V | and |E | if no
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Table 1 A family of distance-
and degree-based graph
invariants

W DD+ DD∗
H RDD+ ? RDD∗ ?

ambiguity can arise. The degree of a vertex u ∈ V is the number of edges incident to
u, denoted by degG(u). The maximum and minimum vertex degree in the graph G
will be denoted by �(G) and δ(G), respectively. The distance between two vertices
u and v is the length of a shortest path connecting them in G, denoted by distG(u, v).
The maximum value of such numbers, diam(G), is said to be the diameter of G. A
matching of a graphG is a set of edges with no shared endpoints. Amaximal matching
in a graph is a matching whose cardinality cannot be increased by adding an edge.
The matching number β(G) is the number of edges in a maximum matching.

The link, denoted by (G1 ∼ G2)(a · b), of two disjoint graphs G1 and G2 is the
graph obtained by joining a ∈ V (G1) and b ∈ V (G2) by an edge. Other terminology
and notations needed will be introduced as it naturally occurs in the following and we
use (Bondy and Murty 1976) for those not defined here.

The motivation for studying the quantity that the authors intend to call reciprocal
(sum)-degree distance and reciprocal product-degree distance of a graph respectively,
comes from the following observation. The sum of distances between all pairs of
vertices in a graph G is the Wiener index (Wiener 1947a), namely

W = W (G) =
∑

{u,v}⊆V (G)

distG(u, v), (1)

was first time introduced by Wiener more that 60 years ago (Wiener 1947a). Ini-
tially, the Wiener index W (G) was considered as a molecular-structure descriptor
used in chemical applications, but soon it attracted the interest of pure mathematicians
(Entringer et al. 1976); for details and additional references see the review (Dobrynin et
al. 2001) and the recent papers (Caporossi et al. 2012; Li et al. 2011;Wiener 1947b, c).

Eventually, a number of modifications of the Wiener index were proposed, which
we present in the following table:

In Table 1, W is the ordinary Wiener index, Eq. (1), whereas

DD+ = DD+(G) =
∑

{u,v}⊆V (G)

[
degG(u) + degG(v)

]
distG(u, v) (2)

DD∗ = DD∗(G) =
∑

{u,v}⊆V (G)

[
degG(u) · degG(v)

]
distG(u, v) (3)

H = H(G) =
∑

{u,v}⊆V (G)
u �=v

1

distG(u, v)
(4)

The graph invariants defined via Eqs. (2)–(4) have all beenmuch studied in the past.
The invariant DD+ was first time introduced by Dobrynin and Kochetova (1994) and
named (sum)-degree distance. Later the same quantity was examined under the name
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“Schulz index” (Gutman 1994). For mathematical research on degree distance see (Ilić
et al. 2011; Tomescu 2010) and the references cited therein. A remarkable property
of DD+ is that in the case of trees of order n, the identity DD+ = 4W − n(n − 1)
holds (Klein et al. 1992).

In Gutman (1994) it was shown that also the multiplicative variant of the degree
distance, namely DD∗ , Eq. (3), obeys an analogous relation: DD∗ = 4W − (2n −
1)(n − 1). This latter quantity is sometimes referred to as the “Gutman index” (see
Feng and Liu 2011; Mukwembi 2012; and the references quoted therein), but here we
call it product-degree distance.

The greatest contributions to the Wiener index, Eq. (1), come from most distant
vertex pairs. Because in many applications of graph invariants it is preferred that the
contribution of vertex pairs diminishes with distance, the Wiener index was modified
according to Eq. (4). This distance-based graph invariant is called Harary index and
was introduced in the 1990s by Plavšić et al. (1993). It also was subject of numerous
mathematical studies (see Cui and Liu 2012; Xu 2012; Xu and Das 2011; Zhou et al.
2008; and the references cited therein).

The graph invariants, defined via Eqs. (1)–(4), can be arranged as in Table 1. From
this Table it is immediately seen that one more such invariants are missing.

In Su et al. (2012a) introduced the reciprocal product-degree distance of graphs,
which can be seen as a product-degree-weight version of Harary index:

RDD∗ = RDD∗(G) =
∑

{u,v}⊆V (G)
u �=v

degG(u) · degG(v)

distG(u, v)
. (5)

They mainly determined the connected graph of given order with maximum RDD∗-
value, and established various lower and upper bounds for RDD∗ in terms ofmatching,
independence number, vertex-connectivity and other topological invariants.

Hua and Zhang (2012) proposed a new graph invariant named reciprocal degree
distance (here we call it reciprocal sum-degree distance), which can be seen as a
(sum)-degree-weight version of Harary index:

RDD+ = RDD+(G) =
∑

{u,v}⊆V (G)
u �=v

degG(u) + degG(v)

distG(u, v)
. (6)

In (Hua andZhang 2012) theymainly presented some extremal properties of reciprocal
degree distance. However, to our best knowledge, the RDD+-value of connected
graphs with a given matching number has not been considered by other authors so
far. In this contribution, we first investigate sharp bounds of the reciprocal sum-degree
distance of graphswith a givenmatching number. The extremal graphs also determined
completely. Then we explore the k-decomposition of the complete graph Kn for the
reciprocal sum-degree distance. Formulas for the reciprocal sum-degree distance of
join and the Cartesian product graphs were also established.
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2 RDD+-value with given matching number

Let G − e denote the graph formed from G by deleting an edge e ∈ E, and G + e
denote the one obtained from G by adding an edge e ∈ E .

Lemma 2.1 (Hua and Zhang 2012) Let G be a connected graph of order n at least
three. Each of the following holds:

(a) if G is not isomorphic to Kn (the complete graph of order n), then RDD+(G) <

RDD+(G + e) for any e ∈ E(G);
(b) if G has an edge e not being a bridge, then RDD+(G) > RDD+(G − e).

A component of a graph is said to be odd (resp., even) if it has odd (resp., even) number
of vertices. Indicate the number of odd components by o(G).

The following is an immediate consequence of the Tutte-Berge formula (Lovász
and Plummer 1986).

Lemma 2.2 (Lovász and Plummer 1986) Let G be a connected graph of order n.
Then

n − 2β = max{o(G − X) − |X | : X ⊂ V }.

LetQ(n, β) denote the class of connected graphs of order n with matching number
β.

Lemma 2.3 Let G be a connected graph of order n ≥ 4 with matching number
β ∈ [2, 	 n

2 
]. Let

σ = 23 − 4n + √
37n2 − 121n + 109

21
.

Each of the following holds:

(a) if β = 	 n
2 
, then RDD+(G) ≤ n(n − 1)2, with equality if and only if G = Kn;

(b) ifσ < β ≤ 	 n
2 
−1, then RDD+(G) ≤ 4β3+(2n−12)β2+(11−3n)β+ n2−n−4

2 ,

with equality if and only if G = K1 + (K2β−1 ∪ Kn−2β);
(c) if β = σ, then RDD+(G) ≤ 4σ 3 + (2n − 12)σ 2 + (11 − 3n)σ + n2−n−4

2 =
1
2σ

3 − 1
2σ

2 + n2−3n+2
2 σ, with equality if and only if G = Kβ + Kn−β or G =

K1 + (K2β−1 ∪ Kn−2β);
(d) if 2 ≤ β < σ, then RDD+(G) ≤ 1

2β
3 − 1

2β
2 + n2−3n+2

2 β, with equality if and
only if G = Kβ + Kn−β .

Proof Let G ′ be a connected graph with maximum RDD+-value in Q(n, β). From
Lemma 2.2, it follows that there exists a vertex subset X ′ ⊂ V (G ′) such that

n − 2β = max{o(G ′ − X) − |X | : X ⊂ V } = o(G ′ − X ′) − |X ′|.

For simplicity, let |X ′| = s and o(G ′ − X ′) = t . Then n − 2β = t − s.
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Case I. s = 0.

In this case, G ′ − X ′ = G ′ and then n − 2β = t ≤ 1. By our choice of G and
Lemma 2.1, we obtain that G ′ = Kn, then we have RDD+(G ′) = n(n − 1)2.

Case II. s ≥ 1.

Consequently, t ≥ 1. Let Go
1,G

o
2, · · · ,Go

t be all the odd components of G ′ − X ′.
To obtain our result, we state and prove the following four claims.

Claim 1. There is no even component in G ′ − X ′.

To the contrary, let Ge be an even component. Then the link (Ge ∼ Go
i )(a · b),

obtained by joining a vertex a ∈ V (Ge) and b ∈ V (Go
i ), is also an odd component in

G ′−X ′.We denote such a graph byG ′′, for which n−2β(G ′′) ≥ o(G ′′−X ′)−|X ′| =
o(G ′ − X ′) − |X ′| holds. This implies that G ′′ ∈ Q(n, β), which contradicts to the
choice of G ′.

Claim 2. Each odd component Go
i (1 ≤ i ≤ t), and the graph induced by X ′, are

complete.

Assume that Go
i is not complete. Then there must exist two non-adjacent vertices

u, v in Go
i . By Lemma 2.1, one can get a graph G ′ + uv, which increases the RDD+-

value. This again is a contradiction with the choice of G ′. Similarly, we can prove that
X ′ is complete. ��

Claim 3. Each vertex of Go
i is adjacent to a vertex of X ′.

The proof follows as before. ��
Now, without loss of generality, we let ni = |V (Go

i )| for i = 1, 2, · · · , t . Then by
Claim 1, 2 and 3 we have

G ′ = Ks + (Kn1 ∪ Kn2 ∪ · · · ∪ Knt ).

Let ̂RDD+(G1,G2) denote the contribution to the RDD+-value between vertices of
G1 and those of G2, then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̂RDD+(Kni , Kni ) = 2
(ni
2

)
(ni + s − 1),

̂RDD+(Kni , Kn j ) = nin j (ni + s − 1 + n j + s − 1),
̂RDD+(Kni , Ks) = sni (n − 1 + ni + s − 1),
̂RDD+(Ks, Ks) = 2

(s
2

)
(n − 1).

Hence, the reciprocal sum-degree distance of G ′ can be represented as

RDD+(G ′) =
t∑

i=1

̂RDD+(Kni , Kni ) +
∑

i< j

̂RDD+(Kni , Kn j )

+
t∑

i=1

̂RDD+(Kni , Ks) + ̂RDD+(Ks, Ks)
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=
t∑

i=1

n3i + (2s − 2)
t∑

i=1

n2i + (s2 + (n − 3)s + 1)
t∑

i=1

ni

+
∑

i< j

ni n j (ni + n j + 2s − 2) + 2

(
s

2

)
(n − 1).

We also need claim 4 below, which can be verified by Lagrange multiplier.

Claim 4. Each of the following function

⎧
⎪⎪⎨

⎪⎪⎩

F1(n1, n2, · · · , nt ) = n31 + n32 + · · · + n3t
F2(n1, n2, · · · , nt ) = n21 + n22 + · · · + n2t
F3(n1, n2, · · · , nt ) = n1 + n2 + · · · + nt
F4(n1, n2, · · · , nt ) = ∑

i< j ni n j (ni + n j + 2s − 2)

attains its maximum under the conditions n1 +n2 +· · ·+nt = n− s and 1 ≤ n1 ≤
n2 ≤ · · · ≤ nt if and only if n1 = n2 = · · · = nt−1 = 1 and nt = 2β − 2s + 1.

By Claim 4, we get

RDD+(G ′) = F1(n1, n2, · · · , nt ) + 2(s − 1)F2(n1, n2, · · · , nt )

+(s2 + (n − 3) + 1)F3(n1, n2, · · · , nt ) + 1

2
F4(n1, n2, · · · , nt ),

which attains its maximum if and only if n1 = n2 = · · · = nt−1 = 1 and nt =
n − s − t + 1 = 2β − 2s + 1.

It follows that

G ′ = Ks + (K2β−2s+1 ∪ Kn+s−2β−1).

Simple calculations shows that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̂RDD+(K2β−2s+1, K2β−2s+1) = 2
(2β−2s+1

2

)
(2β − s),

̂RDD+(Kn+s−2β−1, Kn+s−2β−1) = (n+s−2β−1
2

)
s,

̂RDD+(K2β−2s+1, Kn+s−2β−1) = (2β − 2s + 1)(n + s − 2β − 1)β,

̂RDD+(Ks, Ks) = 2
(s
2

)
(n − 1).

Taking into account the contributions to the RDD+-value above, it follows that

RDD+(G ′) = ̂RDD+(K2β−2s+1, K2β−2s+1) + ̂RDD+(Kn+s−2β−1, Kn+s−2β−1)

+ ̂RDD+(K2β−2s+1, Kn+s−2β−1) + ̂RDD+(Ks, Ks)

= −7

2
s3 + 4n + 24β − 1

2
s2 + n2 − 5n − 24β2 − 8nβ + 4

2
s

+4β3 + 2nβ2 + (n − 1)β.
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Analyzing the function � on s

�(s) = −7

2
s3 + 4n + 24β − 1

2
s2 + n2 − 5n − 24β2 − 8nβ + 4

2
s + 4β3

+2nβ2 + (n − 1)β.

It follows that s ≤ β, since t − s = n − 2β ≥ t + s − 2β. By taking derivatives, we
have

�′(s) = −21

2
s2 + (4n + 24β − 1)s + n2 − 5n − 24β2 − 8nβ + 4

2
and

�′′(s) = −21s + 4n + 24β − 1 = 21(β − s) + 4n + 3β − 1 ≥ 4n + 3β − 1 > 0.

This implies that�(s) is a strictly convex function for s ≤ β, and the maximum value
of �(s) is attained when s = 1 or s = β.

�(1) = 4β3 + (2n − 12)β2 − (3n − 11)β + n2 − n − 4

2
and

�(β) = 1

2
β3 − 1

2
β2 + n2 − 3n + 2

2
β.

After subtraction, we obtain

�(1) − �(β) = 7

2
β3 + 4n − 23

2
β2 − n2 + 3n − 20

2
β + n2 − n − 4

2
.

Now, let us consider the function � on β

�(β) = 7

2
β3 + 4n − 23

2
β2 − n2 + 3n − 20

2
β + n2 − n − 4

2
.

It follows that

� ′(β) = 21

2
β2 + (4n − 23)β − n2 + 3n − 20

2
.

The quadratic equation� ′(β) = 0 has two distinct roots, since 37n2−121n+109 > 0.
Let σ be its positive root, namely

σ = 23 − 4n + √
37n2 − 121n + 109

21
.

If β > σ, and � ′(β) > 0, then �(β) is an increasing function, and �(β) >

�(1) = 0 follows. This implies that �(1) > �(β). If β < σ, then �(1) < �(β).
This completes the proof of Theorem 2.3. ��
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3 K -decomposition for RDD+

Let k be an integer not less than 2, a k -decomposition Dk = (G1,G2, · · · ,Gk) of a
graph G is a partition of its edge set to form k spanning subgraphs G1,G2, · · · ,Gk,

each of the Gi is said to be a cell of G. We encourage the interested reader to
refer (Aouchiche and Hansen 2013; Nordhaus and Gaddum 1956) for some more
information.

Li andZhao (2004) introduced the concept of the generalized first Zagreb index for a
graph, which was defined as: M1,ε(G) = ∑

v∈V [degG(v)]ε . In particular, M1,2(G) =
M1(G) is the first Zagreb index.We encourage the interested reader to consult (Ashrafi
et al. 2011; Došlić and Bonchev 2008; Klein et al. 2007) for details on these indices.

Lemma 3.1 (Su et al. 2012b) LetDk be a k-decomposition of the complete graph Kn

and t be an integer. Then

(a) n(n − 1)εk1−ε ≤ ∑k
i=1 M1,ε(Gi ) ≤ n(n − 1)ε, if ε > 1;

(b) n(n − 1)ε ≤ ∑k
i=1 M1,ε(Gi ) ≤ n(n − 1)εk1−ε, if 0 < ε < 1;

(c) n(n − 1)εk1−ε ≤ ∑k
i=1 M1,ε(Gi ) ≤ n

[
t + t (n − 2)ε

]
, if ε < 0 and k = 2t;

(d) n(n−1)εk1−ε ≤ ∑k
i=1 M1,ε(Gi ) ≤ n

[
t+(t+1)(n−2)ε

]
, if ε < 0 and k = 2t+1.

The following results will be used in our proofs.

Lemma 3.2 (Hua and Zhang 2012) Let G be a connected graph of order n ≥ 2 and
m ≥ 1. Then

2(n − 1)m

diam(G)
+ (diam(G) − 1)M1(G)

diam(G)
≤ RDD+(G) ≤ (n − 1)m + M1(G)

2
,

with either equality if and only if diam(G) ≤ 2.
Hua and Zhang characterized connected graphs with the maximum and minimum

RDD+-value, respectively. More precisely:

Lemma 3.3 (Hua and Zhang 2012) Among all nontrivial connected graphs of order
n, the graphs with the maximum and minimum RDD+-value are Kn and Pn (the path
of order n), respectively.

This bring us to the main result in this section.

Theorem 3.4 Let Dk be a k-decomposition of the complete graph Kn. Then

kRDD+(Pn) ≤
k∑

i=1

RDD+(Gi ) ≤ n(n − 1)2,

with left equality if and only if each cell Gi ∼= Pn, and with right equality if and only
if the diameter of Gi is at most two.
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Proof Let mi denotes the size of the i-th cell Gi of Dk . By Lemmas 3.1 and 3.2, we
get

k∑

i=1

RDD+(Gi ) ≤
k∑

i=1

[
(n − 1)mi + 1

2
M1(Gi )

]

= (n − 1)
k∑

i=1

mi + 1

2

k∑

i=1

M1(Gi )

≤ n(n − 1)2.

An et al. (2011) proved that for any sufficiently large n with respect to k, there is a
k-decomposition Dk of Kn such that diam(Gi ) = 2 for each i = 1, 2, · · · , k. Hence
the right equality holds if and only if the diameter of Gi is at most two.

The lower bound can be verified directly by Lemma 3.3

k∑

i=1

RDD+(Gi ) ≥ kRDD+(Pn).

This completes the proof of Theorem 3.4. ��

4 RDD+-value for operation graphs

In this section we present formulas for computing RDD+ of join and the Cartesian
product of graphs.

4.1 Join graphs

The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge
sets E1 and E2 is the graph union G1 ∪G2 together with all edges joining V1 and V2.

The following lemma is crucial in what follows later. For convenience, we use |Vi |
and |Ei | to denote the order and the size of graph Gi for i = 1, 2, respectively.

Lemma 4.1 Let G1 and G2 be two connected graphs. Then we have

(a) |V (G1 + G2)| = |V1| + |V2| and |E(G1 + G2)| = |E1| + |E2| + |V1| · |V2|.
(b) The join of graphs is associative and commutative.
(c) degG1+G2

(u) = degG1
(u)+|V2| for u ∈ V1 and degG1+G2

(u) = degG2
(v)+|V1|

for v ∈ V2.
(d)

distG1+G2(u1, u2)=
⎧
⎨

⎩

0, if u1 = u2,
1, if u1u2 ∈ E1 or u1u2 ∈ E2 or (u1 ∈ V1 and u2 ∈ V2),
2, otherwise.
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Proof The claims (a)–(d) are derived from the definitions and somewell known results
of the book of Imrich and Klavžar (2000). ��

Let ̂RDD++(Gi ,Gi ) (resp., ̂RDD+∗(Gi ,Gi )) denote the contribution to the
RDD+-value by adjacent (resp., non-adjacent) vertices in Gi for i = 1, 2, respec-
tively.

Theorem 4.2 Let G = G1 + G2 be the join of two connected graphs G1 and G2.
Then

RDD+(G1+G2)=M1(G1)+M1(G2)+ 1

2
M1(G1)+ 1

2
M1(G2)+4|V2| · |E1|+4|V1|

·|E2| + |V1| · |V2|2 + |V1|2 · |V2| + |V2| · |E1| + |V1| · |E2|,
where M1(G) is the first Zagreb co-index of graph G.

Proof Simple calculations shows that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂RDD++(G1,G1) = ∑
uv∈E1

[
degG1

(u) + degG1
(v) + 2|V2|

] = M1(G1) + 2|V2| · |E1|,
̂RDD++(G2,G2) = ∑

uv∈E2

[
degG2

(u) + degG2
(v) + 2|V1|

] = M1(G1) + 2|V1| · |E2|,
̂RDD+∗(G1,G1) = ∑

uv∈E1

[
degG1

(u) + degG1
(v) + 2|V2|

] · 1
2 = 1

2M1(G1) + |V2| · |E1|,
̂RDD+∗(G2,G2) = ∑

uv∈E2

[
degG2

(u) + degG2
(v) + 2|V1|

] · 1
2 = 1

2M1(G2) + |V1| · |E2|,
̂RDD+(G1,G2) = ∑

u∈V1
∑

v∈V2
[
degG1

(u) + degG2
(v) + |V1| + |V2|

]

= 2|V2| · |E1| + 2|V1| · |E2| + |V1|2 · |V2| + |V1| · |V2|2.

Hence, the reciprocal sum-degree distance of G1 + G2 can be written as the sum

RDD+(G) = ̂RDD++(G1,G1) + ̂RDD++(G2,G2) + ̂RDD+∗(G1,G1)

+ ̂RDD+∗(G2,G2) + ̂RDD+(G1,G2)

= M1(G1) + M1(G2) + 1

2
M1(G1) + 1

2
M1(G2) + 4|V2| · |E1|

+4|V1| · |E2| + |V1| · |V2|2 + |V1|2 · |V2| + |V2| · |E1| + |V1| · |E2|.
This completes the proof of Theorem 4.2. ��

Let Ks,t be the bipartite graph with two partitions having s and t vertices. Note that
Ks,t = Ks + K t , we have:

Corollary 4.3 RDD+(Ks,t ) = RDD+(Ks + K t ) = st2 + s2t + s
(t
2

) + t
(s
2

)
.

4.2 Cartesian product graphs

The Cartesian productG1�G2 of graphsG1 andG2 is a graphwith vertex set V1×V2,
and two vertices (u1, u2) and (v1, v2) adjoint by an edge:

(u1, u2) ∼ (v1, v2) ⇔
⎧
⎨

⎩

u1 = v1 and u2 ∼ v2 in G2,

or
u2 = v2 and u1 ∼ v1 in G1.
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Lemma 4.4 Let G1 and G2 be two connected graphs. Then we have

(a) |V (G1�G2)| = |V1| · |V2| and |E(G1�G2)| = |V1| · |E2| + |V2| · |E1|.
(b) degG1�G2

(u, v) = degG1
(u) + degG2

(v);
(c) distG1�G2((u

′, u′′), (v′, v′′)) = distG1(u
′, v′) + distG2(u

′′, v′′).

Proof The claims (a)–(c) are derived from the definitions and somewell known results
of the book of Imrich and Klavžar Imrich and Klavžar (2000). ��
Theorem 4.5 Let G = G1�G2 be the Cartesian product of graphs G1 and G2. Then

RDD+(G1�G2)≤|V2|RDD+(G1)+|V1|RDD+(G2)+4|E1|H(G2)+4|E2|H(G1).

Proof Let u = (u′, u′′) and v = (v′, v′′) be two vertices in G = G1�G2. By the
definition of RDD+ and Lemma 4.4, we have

RDD+(G1�G2) =
∑

{u,v}∈V (G)

degG1�G2
(u) + degG1�G2

(v)

distG1�G2
(u, v)

=
∑

{u,v}∈V (G)

degG1
(u′) + degG2

(u′′) + degG1
(v′) + degG2

(v′′)
distG1 (u

′, v′) + distG2 (u
′′, v′′)

≤
∑

a∈V1

∑

{u′′,v′′}∈V2

[
degG1

(u′) + degG1
(v′)

distG2 (u
′′, v′′)

+ degG2
(u′′) + degG2

(v′′)
distG2 (u

′′, v′′)

]

+
∑

b∈V2

∑

{u′,v′}∈V1

[
degG1

(u′) + degG1
(v′)

distG1 (u
′, v′)

+ degG2
(u′′) + degG2

(v′′)
distG1 (u

′, v′)

]

= |V2|RDD+(G1) + |V1|RDD+(G2) + 4|E1|H(G2) + 4|E2|H(G1).

This completes the proof of Theorem 4.5. ��
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