207 research outputs found

    The role of Bacillus anthracis germinant receptors in germination and virulence

    Full text link
    Nutrient-dependent germination of Bacillus anthracis spores is stimulated when receptors located in the inner membrane detect combinations of amino acid and purine nucleoside germinants. B. anthracis produces five distinct germinant receptors, GerH, GerK, GerL, GerS and GerX. Otherwise isogenic mutant strains expressing only one of these receptors were created and tested for germination and virulence. The GerH receptor was necessary and sufficient for wild-type levels of germination with inosine-containing germinants in the absence of other receptors. GerK and GerL were sufficient for germination in 50 mM L-alanine. When mutants were inoculated intratracheally, any receptor, except for GerX, was sufficient to allow for a fully virulent infection. In contrast, when inoculated subcutaneously only the GerH receptor was able to facilitate a fully virulent infection. These results suggest that route of infection determines germinant receptor requirements. A mutant lacking all five germinant receptors was also attenuated and exhibited a severe germination defect in vitro . Together, these data give us a greater understanding of the earliest moments of germination, and provide a more detailed picture of the signals required to stimulate this process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78614/1/j.1365-2958.2009.06972.x.pd

    Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution

    Get PDF
    Background: Sequence mutations represent a driving force of adaptive evolution in bacterial pathogens. It is especially evident in reductive genome evolution where bacteria underwent lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in loss of function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a common soil bacterial ancestor with its closely related bacillus species but is the only obligate, causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would follow a compatible evolution path. Results: In this study, a cluster-based evolution scheme was devised to analyze genes that are gained by or lost from B. anthracis. The study detected gene losses/gains at two separate evolutionary stages. The stage I is when B. anthracis and its sister species within the Bacillus cereus group diverged from other species in genus Bacillus. The stage II is when B. anthracis differentiated from its two closest relatives: B. cereus and B. thuringiensis. Many genes gained at these stages are homologues of known pathogenic factors such those for internalin, B. anthracis-specific toxins and large groups of surface proteins and lipoproteins. Conclusion: The analysis presented here allowed us to portray a progressive evolutionary process during the lifestyle shift of B. anthracis, thus providing new insights into how B. anthracis had evolved and bore a promise of finding drug and vaccine targets for this strategically important pathogen

    Genetic analysis of petrobactin transport in Bacillus anthracis

    Full text link
    Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis , the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The Ξ΄ fatB strain was capable of wild-type levels of growth in iron-depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, Ξ΄ fpuA bacteria exhibited a significant decrease in growth under low-iron conditions when compared with wild-type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of Ξ΄ fpuA to import this siderophore. Ξ΄ fpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78578/1/j.1365-2958.2009.07025.x.pd

    Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response

    Get PDF
    Cronobacter sakazakii is the most frequently clinically isolated species of the Cronobacter genus. However the virulence factors of C. sakazakii including their ability to overcome host barriers remains poorly studied. In this study, ten clinical isolates of C. sakazakii were assessed for their ability to invade and translocate through human microvascular endothelial cells (HBMEC). Their ability to avoid phagocytosis in human macrophages U937 and human brain microglial cells was investigated. Additionally, they were tested for serum sensitivity and the presence of the Cronobacter plasminogen activation gene (cpa) gene, which is reported to confer serum resistance. Our data showed that the clinical C. sakazakii strains invaded and translocated through Caco-2 and HBMEC cell lines and some strains showed significantly higher levels of invasion and translocation. Moreover, C. sakazakii was able to persist and even multiply in phagocytic macrophage and microglial cells. All strains, except one, were able to withstand human serum exposure, the single serum sensitive strain was also the only one which did not encode for the cpa gene. These results demonstrate that C. sakazakii clinical host immune response indicating their capacity to cause diseases such as necrotizing enterocolitis (NEC) and meningitis. Our data showed for the first time the ability of C. sakazakii clinical isolates to survive and multiply within human microglial cells. Additionally, it was shown that C. sakazakii clinical strains have the capacity to translocate through the Caco-2 and HBMEC cell lines paracellularly

    Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    Get PDF
    BACKGROUND: Photocatalysis of titanium dioxide (TiO(2)) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host

    Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility

    Get PDF
    The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome

    In Vivo Transcription Dynamics of the Galactose Operon: A Study on the Promoter Transition from P1 to P2 at Onset of Stationary Phase

    Get PDF
    Quantitative analyses of the 5β€² end of gal transcripts indicate that transcription from the galactose operon P1 promoter is higher during cell division. When cells are no longer dividing, however, transcription is initiated more often from the P2 promoter. Escherichia coli cells divide six times before the onset of the stationary phase when grown in LB containing 0.5% galactose at 37Β°C. Transcription from the two promoters increases, although at different rates, during early exponential phase (until the third cell division, OD600 0.4), and then reaches a plateau. The steady-state transcription from P1 continues in late exponential phase (the next three cell divisions, OD600 3.0), after which transcription from this promoter decreases. However, steady-state transcription from P2 continues 1 h longer into the stationary phase, before decreasing. This longer steady-state P2 transcription constitutes the promoter transition from P1 to P2 at the onset of the stationary phase. The intracellular cAMP concentration dictates P1 transcription dynamics; therefore, promoter transition may result from a lack of cAMP-CRP complex binding to the gal operon. The decay rate of gal-specific transcripts is constant through the six consecutive cell divisions that comprise the exponential growth phase, increases at the onset of the stationary phase, and is too low to be measured during the stationary phase. These data suggest that a regulatory mechanism coordinates the synthesis and decay of gal mRNAs to maintain the observed gal transcription. Our analysis indicates that the increase in P1 transcription is the result of cAMP-CRP binding to increasing numbers of galactose operons in the cell population

    The Effects of Anthrax Lethal Toxin on Host Barrier Function

    Get PDF
    The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects
    • …
    corecore