5,492 research outputs found
Adaptive spectral identification techniques in presence of undetected non linearities
The standard procedure for detection of gravitational wave coalescing
binaries signals is based on Wiener filtering with an appropriate bank of
template filters. This is the optimal procedure in the hypothesis of addictive
Gaussian and stationary noise. We study the possibility of improving the
detection efficiency with a class of adaptive spectral identification
techniques, analyzing their effect in presence of non stationarities and
undetected non linearities in the noiseComment: 4 pages, 2 figures, uses ws-procs9x6.cls Proceedings of "Non linear
physics: theory and experiment. II", Gallipoli (Lecce), 200
A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4
A model for the simulation of orientational effects in straight and bent
periodic atomic structures is presented. The continuum potential approximation
has been adopted.The model allows the manipulation of particle trajectories by
means of straight and bent crystals and the scaling of the cross sections of
hadronic and electromagnetic processes for channeled particles. Based on such a
model, an extension of the Geant4 toolkit has been developed. The code has been
validated against data from channeling experiments carried out at CERN
Planar channeling and quasichanneling oscillations in a bent crystal
Particles passing through a crystal under planar channeling experience
transverse oscillations in their motion. As channeled particles approach the
atomic planes of a crystal, they are likely to be dechanneled. This effect was
used in ion-beam analysis with MeV energy. We studied this effect in a bent
crystal for positive and negative particles within a wide range of energies in
sight of application of such crystals at accelerators. We found the conditions
for the appearance or not of channeling oscillations. Indeed a new kind of
oscillations, strictly related to the motion of over-barrier particles, i.e.
quasichanneling particles, has been predicted. Such oscillations, named planar
quasichanneling oscillations, possess a different nature than channeling
oscillations. Through computer simulation, we studied this effect and provided
a theoretical interpretation for them. We show that channeling oscillations can
be observed only for positive particles while quasichanneling oscillations can
exist for particles with either sign. The conditions for experimental
observation of channeling and quasichanneling oscillations at existing
accelerators with available crystal has been found and optimized.Comment: 25 pages, 11 figure
Exotic magnetism on the quasi-FCC lattices of the double perovskites LaNaBO (B Ru, Os)
We find evidence for long-range and short-range ( 70 \AA~at 4 K)
incommensurate magnetic order on the quasi-face-centered-cubic (FCC) lattices
of the monoclinic double perovskites LaNaRuO and LaNaOsO
respectively. Incommensurate magnetic order on the FCC lattice has not been
predicted by mean field theory, but may arise via a delicate balance of
inequivalent nearest neighbour and next nearest neighbour exchange
interactions. In the Ru system with long-range order, inelastic neutron
scattering also reveals a spin gap 2.75 meV. Magnetic
anisotropy is generally minimized in the more familiar octahedrally-coordinated
systems, so the large gap observed for LaNaRuO may result from
the significantly enhanced value of spin-orbit coupling in this
material.Comment: 5 pages, 4 figure
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
We propose a unique program of measurements of electric and magnetic dipole
moments of charm, beauty and strange charged baryons at the LHC, based on the
phenomenon of spin precession of channeled particles in bent crystals. Studies
of crystal channeling and spin precession of positively- and negatively-charged
particles are presented, along with feasibility studies and expected
sensitivities for the proposed experiment using a layout based on the LHCb
detector.Comment: 19 pages, 13 figure
Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering
Inelastic neutron scattering has been applied to the study of the spin
dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total
spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2)
with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity
measurements for several intra-multiplet and inter-multiplet magnetic
excitations allow us to determine the spin wavefunctions of the investigated
clusters. Effects due to the mixing of different spin multiplets have been
considered. Such effects proved to be important to correctly reproduce the
energy and intensity of magnetic excitations in the neutron spectra. On the
contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry
of the first excited spin states is such that anticrossing conditions with the
ground state can be realized in the presence of an external magnetic field.
Heterometallic Cr7M wheels are therefore good candidates for macroscopic
observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and
added references, one sentence change
Stroboscopic Laser Diagnostics for Detection of Ordering in One-Dimensional Ion beam
A novel diagnostic method for detecting ordering in one-dimensional ion beams
is presented. The ions are excited by a pulsed laser at two different positions
along the beam and fluorescence is observed by a group of four
photomultipliers. Correlation in fluorescence signals is firm indication that
the ion beam has an ordered structure.Comment: 7 pages, REVTEX, fig3 uuencoded, figs 1-2 available upon request from
[email protected], to appear in Phys. Rev.
Complete phenomenological gravitational waveforms from spinning coalescing binaries
The quest for gravitational waves from coalescing binaries is customarily
performed by the LIGO-Virgo collaboration via matched filtering, which requires
a detailed knowledge of the signal. Complete analytical coalescence waveforms
are currently available only for the non-precessing binary systems. In this
paper we introduce complete phenomenological waveforms for the dominant
quadrupolar mode of generically spinning systems. These waveforms are
constructed by bridging the gap between the analytically known inspiral phase,
described by spin Taylor (T4) approximants in the restricted waveform
approximation, and the ring-down phase through a phenomenological intermediate
phase, calibrated by comparison with specific, numerically generated waveforms,
describing equal mass systems with dimension-less spin magnitudes equal to 0.6.
The overlap integral between numerical and phenomenological waveforms ranges
between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v
Development status of the LAUE project
We present the status of LAUE, a project supported by the Italian Space
Agency (ASI), and devoted to develop Laue lenses with long focal length (up to
100 meters), for hard X--/soft gamma--ray astronomy (80-600 keV). Thanks to
their focusing capability, the design goal is to improve the sensitivity of the
current instrumention in the above energy band by 2 orders of magnitude, down
to a few times photons/(cm s keV).Comment: 9 pages, 9 figures, presented at the Space Telescopes and
Instrumentation Symposium in Amsterdam, 2012: Ultraviolet to Gamma Ray
Conference. Published in the Proceedings of the SPIE, Volume 8443, id.
84430B-84430B-9 (2012
- …
