12 research outputs found

    The k-Point Random Matrix Kernels Obtained from One-Point Supermatrix Models

    Full text link
    The k-point correlation functions of the Gaussian Random Matrix Ensembles are certain determinants of functions which depend on only two arguments. They are referred to as kernels, since they are the building blocks of all correlations. We show that the kernels are obtained, for arbitrary level number, directly from supermatrix models for one-point functions. More precisely, the generating functions of the one-point functions are equivalent to the kernels. This is surprising, because it implies that already the one-point generating function holds essential information about the k-point correlations. This also establishes a link to the averaged ratios of spectral determinants, i.e. of characteristic polynomials

    Norm-dependent Random Matrix Ensembles in External Field and Supersymmetry

    Full text link
    The class of norm-dependent Random Matrix Ensembles is studied in the presence of an external field. The probability density in those ensembles depends on the trace of the squared random matrices, but is otherwise arbitrary. An exact mapping to superspace is performed. A transformation formula is derived which gives the probability density in superspace as a single integral over the probability density in ordinary space. This is done for orthogonal, unitary and symplectic symmetry. In the case of unitary symmetry, some explicit results for the correlation functions are derived.Comment: 19 page

    Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions

    Full text link
    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero--Moser--Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a one--dimensional semiconductor. Another model is quasi--two--dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    Derivation of determinantal structures for random matrix ensembles in a new way

    Full text link
    There are several methods to treat ensembles of random matrices in symmetric spaces, circular matrices, chiral matrices and others. Orthogonal polynomials and the supersymmetry method are particular powerful techniques. Here, we present a new approach to calculate averages over ratios of characteristic polynomials. At first sight paradoxically, one can coin our approach "supersymmetry without supersymmetry" because we use structures from supersymmetry without actually mapping onto superspaces. We address two kinds of integrals which cover a wide range of applications for random matrix ensembles. For probability densities factorizing in the eigenvalues we find determinantal structures in a unifying way. As a new application we derive an expression for the k-point correlation function of an arbitrary rotation invariant probability density over the Hermitian matrices in the presence of an external field.Comment: 36 pages; 2 table

    Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case

    Full text link
    Recently, the supersymmetry method was extended from Gaussian ensembles to arbitrary unitarily invariant matrix ensembles by generalizing the Hubbard-Stratonovich transformation. Here, we complete this extension by including arbitrary orthogonally and unitary-symplectically invariant matrix ensembles. The results are equivalent to, but the approach is different from the superbosonization formula. We express our results in a unifying way. We also give explicit expressions for all one-point functions and discuss features of the higher order correlations.Comment: 37 page

    Critical Behavior of a General O(n)-symmetric Model of two n-Vector Fields in D=4-2 epsilon

    Full text link
    The critical behaviour of the O(n)-symmetric model with two n-vector fields is studied within the field-theoretical renormalization group approach in a D=4-2 epsilon expansion. Depending on the coupling constants the beta-functions, fixed points and critical exponents are calculated up to the one- and two-loop order, resp. (eta in two- and three-loop order). Continuous lines of fixed points and O(n)*O(2) invariant discrete solutions were found. Apart from already known fixed points two new ones were found. One agrees in one-loop order with a known fixed point, but differs from it in two-loop order.Comment: 23 page

    Random-Matrix Theory of Quantum Transport

    Get PDF
    This is a comprehensive review of the random-matrix approach to the theory of phase-coherent conduction in mesocopic systems. The theory is applied to a variety of physical phenomena in quantum dots and disordered wires, including universal conductance fluctuations, weak localization, Coulomb blockade, sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and giant conductance oscillations in a Josephson junction.Comment: 85 pages including 52 figures, to be published in Rev.Mod.Phy

    Recursive construction for a class of radial functions. II. Superspace

    No full text
    We extend the recursion formula for matrix Bessel functions, which we obtained previously, to superspace. It is sufficient to do this for the unitary orthosymplectic supergroup. By direct computations, we show that fairly explicit results can be obtained, at least up to dimension 8x8 for the supermatrices. Since we introduce a new technique, we discuss various of its aspects in some detail. (C) 2002 American Institute of Physics
    corecore