29 research outputs found

    Influence of husbandry procedures on mouse locomotor activity

    Get PDF
    The currently used raL models of obesity and diabetes are derived from either Zucker or from Koletsky rats. Recently, we identified a spontaneous obese rat from out Wistar colony which is maintained as an inbred stock for the past 75 years. Initially, one of the male progeny in a litter was observed to have abnormal body weight for its age. The parents of this ral were identified, the progeny selectively bred, and a colony has been developed. This is designated as WNIN-0b. The colony is maintained by mating heterozygous animals (+/ob), as the homozygous (ob/ob) were found to be infertile. The trait is carried as an autosomal recessive mutation and the colony is currenfly in F7 generation.Obesity is visible in these mutants around 35 days of age. They are hyperphagic and reach a body weight of 500—600 g by 105 days of age. “Kinky” tail is characteristic of this mutant and this is visible around 50-60 days. Sexual maturity is delayed in female obese mutants, as judged by the day of vaginal opening. The animals are cuglyccmic and show hyperinsulinaemia, hypertriglyceridaemia, arid hypercholesterolemia. Another mutant showing hyperglycemia is also obtained fromthe obese colony. Unlike earlier models which are essentially derived from a randomAbred stock, this is the first report of a rat obese model, developed spontaneously from an inbred strain

    Non-invasive biophysical measurement of travelling waves in the insect inner ear

    Get PDF
    Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bushcrickets are inherently invasive, compromising the fine-scale mechanics of each system. Located in the forelegs, the bushcricket ear exhibits outer, middle and inner components; the inner ear containing tonotopically arranged auditory sensilla within a fluid-filled cavity, and externally protected by the leg cuticle. Here, we report bush-crickets with transparent ear cuticles as potential model species for direct, non-invasive measuring of TWs and tonotopy. Using laser Doppler vibrometry and spectroscopy, we show that increased transmittance of light through the ear cuticle allows for effective non-invasive measurements of TWs and frequency mapping. More transparent cuticles allow several properties of TWs to be precisely recovered and measured in vivo from intact specimens. Our approach provides an innovative, noninvasive alternative to measure the natural motion of the sensillia-bearing surface embedded in the intact inner ear fluid

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Causes, consequences and biomarkers of stress in swine: an update

    Get PDF
    BACKGROUND: In recent decades there has been a growing concern about animal stress on intensive pig farms due to the undesirable consequences that stress produces in the normal physiology of pigs and its effects on their welfare and general productive performance. This review analyses the most important types of stress (social, environmental, metabolic, immunological and due to human handling), and their biological consequences for pigs. The physio-pathological changes associated with stress are described, as well as the negative effects of stress on pig production. In addition an update of the different biomarkers used for the evaluation of stress is provided. These biomarkers can be classified into four groups according to the physiological system or axis evaluated: sympathetic nervous system, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and immune system. CONCLUSIONS: Stress it is a process with multifactorial causes and produces an organic response that generates negative effects on animal health and production. Ideally, a panel of various biomarkers should be used to assess and evaluate the stress resulting from diverse causes and the different physiological systems involved in the stress response. We hope that this review will increase the understanding of the stress process, contribute to a better control and reduction of potential stressful stimuli in pigs and, finally, encourage future studies and developments to better monitor, detect and manage stress on pig farms
    corecore