7 research outputs found

    Malar J

    Get PDF
    BACKGROUND: Resistance to all available anti-malarial drugs has emerged and spread including artemisinin derivatives and their partner drugs. Several genes involved in artemisinin and partner drugs resistance, such as pfcrt, pfmdr1, pfK13 or pfpm2, have been identified. However, these genes do not properly explain anti-malarial drug resistance, and more particularly clinical failures observed in Africa. Mutations in genes encoding for Plasmodium falciparum proteins, such as P. falciparum Acetyl-CoA transporter (PfACT), P. falciparum UDP-galactose transporter (PfUGT) and P. falciparum cyclic amine resistance locus (PfCARL) have recently been associated to resistance to imidazolopiperazines and other unrelated drugs. METHODS: Mutations on pfugt, pfact and pfcarl were characterized on 86 isolates collected in Dakar, Senegal and 173 samples collected from patients hospitalized in France after a travel in African countries from 2015 and 2016 to assess their potential association with ex vivo susceptibility to chloroquine, quinine, lumefantrine, monodesethylamodiaquine, mefloquine, dihydroartemisinin, artesunate, doxycycline, pyronaridine and piperaquine. RESULTS: No mutations were found on the genes pfugt and pfact. None of the pfcarl described mutations were identified in these samples from Africa. The K784N mutation was found in one sample and the K734M mutation was identified on 7.9% of all samples for pfcarl. The only significant differences in ex vivo susceptibility according to the K734M mutation were observed for pyronaridine for African isolates from imported malaria and for doxycycline for Senegalese parasites. CONCLUSION: No evidence was found of involvement of these genes in reduced susceptibility to standard anti-malarial drugs in African P. falciparum isolates

    Confirmation of Plasmodium falciparum in vitro resistance to monodesethylamodiaquine and chloroquine in Dakar, Senegal, in 2015

    Get PDF
    International audienceBackground: In response to increasing resistance to anti-malarial drugs, Senegal adopted artemisinin-based combination therapy ( ACT) as the first-line treatment for uncomplicated malaria in 2006. However, resistance of Plasmodium falciparum parasites to artemisinin derivatives, characterized by delayed parasite clearance after treatment with ACT or artesunate monotherapy, has recently emerged and rapidly spread in Southeast Asia. After 10 years of stability with rates ranging from 5.6 to 11.8%, the prevalence of parasites with reduced susceptibility in vitro to monodesethylamodiaquine, the active metabolite of an ACT partner drug, increased to 30.6% in 2014 in Dakar. Additionally, after a decrease of the in vitro chloroquine resistance in Dakar in 2009-2011, the prevalence of parasites that showed in vitro chloroquine resistance increased again to approximately 50% in Dakar since 2013. The aim of this study was to follow the evolution of the susceptibility to ACT partners and other anti- malarial drugs in 2015 in Dakar. An in vitro test is the only method currently available to provide an early indication of resistance to ACT partners. Results: Thirty-two P. falciparum isolates collected in 2015 in Dakar were analysed using a standard ex vivo assay based on an HRP2 ELISA. The prevalence of P. falciparum parasites with reduced susceptibility in vitro to monodesethylamodiaquine, chloroquine, mefloquine, doxycycline and quinine was 28.1, 46.9, 45.2, 31.2 and 9.7%, respectively. None of the parasites were resistant to lumefantrine, piperaquine, pyronaridine, dihydroartemisinin and artesunate. These results confirm an increase in the reduced susceptibility to monodesethylamodiaquine observed in 2014 in Dakar and the chloroquine resistance observed in 2013. The in vitro resistance seems to be established in Dakar. Additionally, the prevalence of parasites with reduced susceptibility to doxycycline has increased two-fold compared to 2014. Conclusions: The establishment of a reduced susceptibility to monodesethylamodiaquine as well as chloroquine resistance, and the emergence of a reduced susceptibility to doxycycline are disturbing. The in vitro and in vivo surveillance of anti- malarial drugs must be implemented in Senegal

    High-quality draft genome sequence and description of Haemophilus massiliensis sp nov.

    No full text
    International audienceStrain FF7(T) was isolated from the peritoneal fluid of a 44-year-old woman who suffered from pelvic peritonitis. This strain exhibited a 16S rRNA sequence similarity of 94.8 % 16S rRNA sequence identity with Haemophilus parasuis, the phylogenetically closest species with a name with standing in nomenclature and a poor MALDI-TOF MS score (1.32 to 1.56) that does not allow any reliable identification. Using a polyphasic study made of phenotypic and genomic analyses, strain FF7(T) was a Gram-negative, facultatively anaerobic rod and member of the family Pasteurellaceae. It exhibited a genome of 2,442,548 bp long genome (one chromosome but no plasmid) contains 2,319 protein-coding and 67 RNA genes, including 6 rRNA operons. On the basis of these data, we propose the creation of Haemophilus massiliensis sp. nov. with strain FF7(T) (= CSUR P859 = DSM 28247) as the type strain

    Absence of association between polymorphisms in the K13 gene and the presence of Plasmodium falciparum parasites at day 3 after treatment with artemisinin derivatives in Senegal

    No full text
    International audienceIn 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy as first-line treatment for uncomplicated malaria. In addition, intravenous (i.v.) injection of artesunate and artemether has gradually replaced quinine for the treatment of severe malaria. Mutations in the propeller domain of the Kelch 13 gene (K13-propeller, PF3D71343700), such as Y493H, R539T, I543T and C580Y, were recently associated with in vivo and in vitro resistance to artemisinin in Southeast Asia. However, these mutations were not identified in Africa. In total, 181 isolates of Plasmodium falciparum from 161 patients from Dakar, Senegal, were collected between August 2015 and January 2016. The K13-propeller gene of the isolates was sequenced. A search for non-synonymous mutations in the propeller region of K13 was performed in the 181 isolates collected from Dakar from 2015 to 2016. Three synonymous mutations were detected (D464D, C469C and R471R). Of 119 patients treated with i.v. artesunate or intramuscular artemether followed by artemether/lumefantrine, 9 patients were still parasitaemic on Day 3. Parasites from these nine patients were wild-type for K13-propeller. None of the polymorphisms known to be involved in artemisinin resistance in Asia were detected. These results suggest that K13 is not the best predictive marker for artemisinin resistance in Africa. More isolates from clinical failure cases or patients with delayed parasite clearance after treatment with artemisinin derivatives are necessary to identify new molecular markers. (C) 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved
    corecore