25 research outputs found

    Inventario de emisiones atmosféricas de puertos y aeropuertos de España para el año 2008

    Get PDF
    El principal objetivo del presente PFC consiste en la elaboración de un inventario de emisiones atmosféricas de puertos y aeropuertos de España, para el año 2008. El inventario se centra en las emisiones ocasionadas por las operaciones de buques y aeronaves dentro de los polígonos portuarios y aeroportuarios, sin tener en cuenta otros focos de emisión que actúa en ellos. Para su realización se recurre a distintas guías metodológicas diseñadas para la elaboración de inventarios de emisiones, así como a datos y estadísticas referentes a tráficos y características infraestructurales de los distintos puertos y aeropuertos. Como resultados se obtienen las emisiones anuales de los contaminantes primarios NOx (óxidos de nitrógeno), CO (monóxido de carbono), NMCOV (compuestos orgánicos volátiles distintos al metano), SO2 (dióxido de azufre), PST (partículas en suspensión totales), PM10 (material particulado de diámetro <10um), PM2,5 (material particulado de diámetro <2.5um); y de los Gases de Efecto Invernadero (GEIs) CO2 (dióxido de carbono) y CH4 (metano), derivadas del tráfico aéreo y marítimo en cada uno de los puertos y aeropuertos gestionados por Puertos del Estado y AENA (Aeropuertos Españoles y Navegación Aérea), respectivamente. Estos valores obtenidos son comparados, a nivel de Comunidades Autónomas (CCAA), con los resultados reportados por el Inventario Nacional de Emisiones (INE), elaborado por el Ministerio de Medio Ambiente Rural y Marino (MARM), lo cual permite validar los datos y metodologías aplicados. Analizando globalmente los resultados, se obtiene que las emisiones derivadas del tráfico aéreo son superiores en los NMCOV, CO, CO2 y CH4, mientras que las operaciones de buques dentro de puertos producen mayores emisiones de NOx, SO2, PM10 y PM2.5. A nivel de infraestructuras, el aeropuerto de Madrid-Barajas es el que presenta una mayor cantidad de contaminantes primarios y GEIs emitidos. En cuanto a puertos, el de Barcelona es el que encabeza la lista de emisiones de contaminantes primarios, mientras que Bahía de Algeciras muestra la mayor cantidad de GEIs

    Air quality forecasts on a kilometer-scale grid over complex Spanish terrains

    Get PDF
    The CALIOPE Air Quality Forecast System (CALIOPE-AQFS) represents the current state of the art in air quality forecasting systems of high-resolution running on high-performance computing platforms. It provides a 48 h forecast of NO2, O3, SO2, PM10, PM2.5, CO, and C6H6at a 4 km horizontal resolution over all of Spain, and at a 1 km horizontal resolution over the most populated areas in Spain with complex terrains (the Barcelona (BCN), Madrid (MAD) and Andalusia (AND) domains). Increased horizontal resolution from 4 to 1 km over the aforementioned domains leads to finer textures and more realistic concentration maps, which is justified by the increase in NO2/O3spatial correlation coefficients from 0.79/0.69 (4 km) to 0.81/0.73 (1 km). High-resolution emissions using the bottom-up HERMESv2.0 model are essential for improving model performance when increasing resolution on an urban scale, but it is still insufficient. Decreasing grid spacing does not reveal the expected improvement in hourly statistics, i.e., decreasing NO2bias by only ~ 2 µg m-3and increasing O3 bias by ~ 1 µg m-3. The grid effect is less pronounced for PM10, because part of its mass consists of secondary aerosols, which are less affected than the locally emitted primary components by a decreasing grid size. The resolution increase has the highest impact over Barcelona, where air flow is controlled mainly by mesoscale phenomena and a lower planetary boundary layer (PBL). Despite the merits and potential uses of the 1-km simulation, the limitations of current model formulations do not allow confirmation of their expected superiority close to highly urbanized areas and large emissions sources. Future work should combine high grid resolutions with techniques that decrease subgrid variability (e.g., stochastic field methods), and also include models that consider urban morphology and thermal parameters.Postprint (published version

    A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories

    Get PDF
    Some studies show that significant uncertainties affect emission inventories, which may impeach conclusions based on air-quality model results. These uncertainties result from the need to compile a wide variety of information to estimate an emission inventory. In this work, we propose and discuss a screening method to compare two emission inventories, with the overall goal of improving the quality of emission inventories by feeding back the results of the screening to inventory compilers who can check the inconsistencies found and, where applicable, resolve errors. The method targets three different aspects: (1) the total emissions assigned to a series of large geographical areas, countries in our application; (2) the way these country total emissions are shared in terms of sector of activity; and (3) the way inventories spatially distribute emissions from countries to smaller areas, cities in our application. The first step of the screening approach consists of sorting the data and keeping only emission contributions that are relevant enough. In a second step, the method identifies, among those significant differences, the most important ones that provide evidence of methodological divergence and/or errors that can be found and resolved in at least one of the inventories. The approach has been used to compare two versions of the CAMS-REG European-scale inventory over 150 cities in Europe for selected activity sectors. Among the 4500 screened pollutant sectors, about 450 were kept as relevant, among which 46 showed inconsistencies. The analysis indicated that these inconsistencies arose almost equally from large-scale reporting and spatial distribution differences. They mostly affect SO2 and PM coarse emissions from the industrial and residential sectors. The screening approach is general and can be used for other types of applications related to emission inventories.Peer ReviewedPostprint (published version

    Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement

    Get PDF
    The CO2 Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO2, CH4 and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO2 Monitoring and Verification Support system. The relative contribution of different emissions and natural fluxes towards observed atmospheric variability is diagnosed by additional tagged tracers in the simulations. The evaluation of such high-resolution model simulations can be used to identify model deficiencies and guide further model improvements.The Copernicus Atmosphere Monitoring Service is operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission as part of the Copernicus Programme (http://copernicus.eu). The CHE and CoCO2 projects have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776186 and No 958927. We also thank the FLUXNET and TCCON PIs for providing the data used for the validation of the nature run dataset.Peer Reviewed"Article signat per 27 autors/es: Anna Agustí-Panareda, Joe McNorton, Gianpaolo Balsamo, Bianca C. Baier, Nicolas Bousserez, Souhail Boussetta, Dominik Brunner, Frédéric Chevallier, Margarita Choulga, Michail Diamantakis, Richard Engelen, Johannes Flemming, Claire Granier, Marc Guevara, Hugo Denier van der Gon, Nellie Elguindi, Jean-Matthieu Haussaire, Martin Jung, Greet Janssens-Maenhout, Rigel Kivi, Sébastien Massart, Dario Papale, Mark Parrington, Miha Razinger, Colm Sweeney, Alex Vermeulen & Sophia Walther "Postprint (published version

    Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0

    Get PDF
    Comprehensive monitoring of NO2 exceedances is imperative for protecting human health, especially in urban areas with traffic. However, an accurate spatial characterization of the exceedances is challenging due to the typically low density of air quality monitoring stations and the inherent uncertainties in urban air quality models. We study how observational data from different sources and timescales can be combined with a dispersion air quality model to obtain bias-corrected NO2 hourly maps at the street scale. We present a kriging-based data fusion workflow that merges dispersion model output with continuous hourly observations and uses a machine-learning-based land use regression (LUR) model constrained with past short intensive passive dosimeter campaign measurements. While the hourly observations allow the bias adjustment of the temporal variability in the dispersion model, the microscale LUR model adds information on the NO2 spatial patterns. Our method includes an uncertainty calculation based on the estimated error variance of the universal kriging technique, which is subsequently used to produce urban maps of probability of exceeding the 200 µg m−3 hourly and the 40 µg m−3 annual NO2 average limits. We assess the statistical performance of this approach in the city of Barcelona for the year 2019. Our results show that simply merging the monitoring stations with the model output already significantly increases the correlation coefficient (r) by +29 % and decreases the root mean square error (RMSE) by −32 %. When adding the time-invariant microscale LUR model in the data fusion workflow, the improvement is even more remarkable, with +46 % and −48 % for the r and RMSE, respectively. Our work highlights the usefulness of high-resolution spatial information in data fusion methods to better estimate exceedances at the street scale.We have received support from the Barcelona City Council through the UncertAIR project (ID 22S09501-001; Recerca Jove i emergent 2022). This research has been supported by the Ministerio de Ciencia e Innovación through the BROWNING project (grant no. RTI2018-099894-BI00), the Agencia Estatal de Investigación as part of the VITALISE project (grant no. PID2019-108086RA-I00) and the MITIGATE project (grant no. PID2020-116324RA695 I00), the H2020 Marie Skłodowska-Curie Actions (grant no. H2020-MSCA-COFUND-2016-754433), the AXA Research Fund, and the Barcelona Supercomputing Center (grant nos. RES-AECT-2021-1-0027 and RES-AECT-2021-2-0001).Peer ReviewedPostprint (author's final draft

    Model output statistics (MOS) applied to Copernicus Atmospheric Monitoring Service (CAMS) O3 forecasts: trade-offs between continuous and categorical skill scores

    Get PDF
    Air quality (AQ) forecasting systems are usually built upon physics-based numerical models that are affected by a number of uncertainty sources. In order to reduce forecast errors, first and foremost the bias, they are often coupled with model output statistics (MOS) modules. MOS methods are statistical techniques used to correct raw forecasts at surface monitoring station locations, where AQ observations are available. In this study, we investigate the extent to which AQ forecasts can be improved using a variety of MOS methods, including moving average, quantile mapping, Kalman filter, analogs and gradient boosting machine methods, and consider as well the persistence method as a reference. We apply our analysis to the Copernicus Atmospheric Monitoring Service (CAMS) regional ensemble median O3 forecasts over the Iberian Peninsula during 2018–2019. A key aspect of our study is the evaluation, which is performed using a comprehensive set of continuous and categorical metrics at various timescales, along different lead times and using different meteorological input datasets. Our results show that O3 forecasts can be substantially improved using such MOS corrections and that improvements go well beyond the correction of the systematic bias. Depending on the timescale and lead time, root mean square errors decreased from 20 %–40 % to 10 %–30 %, while Pearson correlation coefficients increased from 0.7–0.8 to 0.8–0.9. Although the improvement typically affects all lead times, some MOS methods appear more adversely impacted by the lead time. The MOS methods relying on meteorological data were found to provide relatively similar performance with two different meteorological inputs. Importantly, our results also clearly show the trade-offs between continuous and categorical skills and their dependencies on the MOS method. The most sophisticated MOS methods better reproduce O3 mixing ratios overall, with the lowest errors and highest correlations. However, they are not necessarily the best in predicting the peak O3 episodes, for which simpler MOS methods can achieve better results. Although the complex impact of MOS methods on the distribution of and variability in raw forecasts can only be comprehended through an extended set of complementary statistical metrics, our study shows that optimally implementing MOS in AQ forecast systems crucially requires selecting the appropriate skill score to be optimized for the forecast application of interest.This research has been funded by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433, as well as the MITIGATE project (PID2020-116324RA-I00/AEI/10.13039/501100011033) from the Agencia Estatal de Investigacion (AEI). We also acknowledge support by the AXA Research Fund and Red Temática ACTRIS España (CGL2017-90884-REDT), the BSC-CNS “Centro de Excelencia Severo Ochoa 2015-2019” program (SEV-2015-0493), PRACE, and RES for awarding us access to the MareNostrum supercomputer in the Barcelona Supercomputing Center as well as H2020 ACTRIS IMP (no. 871115). We also acknowledge support from the VITALISE project (PID2019-108086RA-I00) funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula

    Get PDF
    In orbit since late 2017, the Tropospheric Monitoring Instrument (TROPOMI) is offering new outstanding opportunities for better understanding the emission and fate of nitrogen dioxide (NO2) pollution in the troposphere. In this study, we provide a comprehensive analysis of the spatio-temporal variability of TROPOMI NO2 tropospheric columns (TrC-NO2) over the Iberian Peninsula during 2018–2021, considering the recently developed Product Algorithm Laboratory (PAL) product. We complement our analysis with estimates of NOx anthropogenic and natural soil emissions. Closely related to cloud cover, the data availability of TROPOMI observations ranges from 30 %–45 % during April and November to 70 %–80 % during summertime, with strong variations between northern and southern Spain. Strongest TrC-NO2 hotspots are located over Madrid and Barcelona, while TrC-NO2 enhancements are also observed along international maritime routes close the strait of Gibraltar, and to a lesser extent along specific major highways. TROPOMI TrC-NO2 appear reasonably well correlated with collocated surface NO2 mixing ratios, with correlations around 0.7–0.8 depending on the averaging time. We investigate the changes of weekly and monthly variability of TROPOMI TrC-NO2 depending on the urban cover fraction. Weekly profiles show a reduction of TrC-NO2 during the weekend ranging from −10 % to −40 % from least to most urbanized areas, in reasonable agreement with surface NO2. In the largest agglomerations like Madrid or Barcelona, this weekend effect peaks not in the city center but in specific suburban areas/cities, suggesting a larger relative contribution of commuting to total NOx anthropogenic emissions. The TROPOMI TrC-NO2 monthly variability also strongly varies with the level of urbanization, with monthly differences relative to annual mean ranging from −40 % in summer to +60 % in winter in the most urbanized areas, and from −10 % to +20 % in the least urbanized areas. When focusing on agricultural areas, TROPOMI observations depict an enhancement in June–July that could come from natural soil NO emissions. Some specific analysis of surface NO2 observations in Madrid show that the relatively sharp NO2 minimum used to occur in August (drop of road transport during holidays) has now evolved into a much broader minimum partly de-coupled from the observed local road traffic counting; this change started in 2018, thus before the COVID-19 outbreak. Over 2019–2021, a reasonable consistency of the inter-annual variability of NO2 is also found between both datasets. Our study illustrates the strong potential of TROPOMI TrC-NO2 observations for complementing the existing surface NO2 monitoring stations, especially in the poorly covered rural and maritime areas where NOx can play a key role, notably for the production of tropospheric O3.We acknowledge the RES (AECT-2022-1- 0008, AECT-2022-2-0003) for awarding us access to the MareNostrum supercomputer in the Barcelona Supercomputing Center, and we also acknowledge the support from the Red Temática ACTRIS España (CGL2017-90884-REDT) and the H2020 ACTRIS IMP (no. 871115). SC acknowledges support from BELSPO through BRAIN-BE 2.0 project LEGO-BEL-AQ (contract B2/191/P1/LEGO-BEL-AQ). This research has received fund- ing from the Ramon y Cajal grant (RYC2021-034511-I, MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR), the MITIGATE (PID2020- 16324RA695 I00/AEI/10.13039/501100011033) and VITALISE (PID2019-108086RA-I00 MCIN/AEI/10.13039/501100011033) projects from the Agencia Estatal de Investigación (AEI), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 870301 (AQ-WATCH H2020 project), and the AXA Research Fund.Peer ReviewedPostprint (published version
    corecore