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Abstract. Comprehensive monitoring of NO2 exceedances is
imperative for protecting human health, especially in urban
areas with traffic. However, an accurate spatial characteri-
zation of the exceedances is challenging due to the typically
low density of air quality monitoring stations and the inherent
uncertainties in urban air quality models. We study how ob-
servational data from different sources and timescales can be
combined with a dispersion air quality model to obtain bias-
corrected NO2 hourly maps at the street scale. We present
a kriging-based data fusion workflow that merges dispersion
model output with continuous hourly observations and uses
a machine-learning-based land use regression (LUR) model
constrained with past short intensive passive dosimeter cam-
paign measurements. While the hourly observations allow
the bias adjustment of the temporal variability in the disper-
sion model, the microscale LUR model adds information on
the NO2 spatial patterns. Our method includes an uncertainty
calculation based on the estimated error variance of the uni-
versal kriging technique, which is subsequently used to pro-
duce urban maps of probability of exceeding the 200 µgm−3

hourly and the 40 µgm−3 annual NO2 average limits. We as-
sess the statistical performance of this approach in the city
of Barcelona for the year 2019. Our results show that sim-
ply merging the monitoring stations with the model output
already significantly increases the correlation coefficient (r)
by +29 % and decreases the root mean square error (RMSE)
by −32 %. When adding the time-invariant microscale LUR
model in the data fusion workflow, the improvement is even
more remarkable, with +46 % and −48 % for the r and

RMSE, respectively. Our work highlights the usefulness of
high-resolution spatial information in data fusion methods to
better estimate exceedances at the street scale.

1 Introduction

Air pollution is the leading environmental risk factor glob-
ally (WHO, 2021). Mortality, the decrease in quality of life,
and the detrimental economic effects associated with air pol-
lution are pressing decision-makers to take action, especially
in urban areas, where more than 50 % of the global popula-
tion lives and air quality standards are frequently exceeded.
In the city of Barcelona (Spain), the high vehicle density
(about 5800 vehicles per km2; Rivas et al., 2014) induces a
chronic NO2 problem, which makes Barcelona the European
city with the sixth-highest mortality associated with NO2 ex-
posure (ISGlobal, 2021; Khomenko et al., 2021). In this con-
text, obtaining information on high-resolution exposure to
NO2 is crucial for decision-making in urban air quality man-
agement.

During the last few decades, several approaches have been
developed to estimate NO2 exposure at different spatiotem-
poral scales (Denby, 2011). A common one is the land use
regression (LUR) model, which relates explanatory variables
of a different nature (land use cover, population density, traf-
fic, climate, and others) with air quality observations using
regression models (Briggs et al., 1997; Hoek et al., 2008;
Beelen et al., 2013). LUR models are generally skillful, rel-
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atively easy to implement, and not very demanding regard-
ing computational resources. However, urban areas often
present strong NO2 spatial gradients that the official moni-
toring network cannot correctly characterize due to its low
spatial representativeness (Vardoulakis et al., 2005; Santiago
et al., 2013; Duyzer et al., 2015a). To overcome this lim-
itation and produce accurate surface NO2 maps, urban or
microscale LUR models rely on low-cost sensors (LCSs),
typically restricting the temporal coverage to a few weeks.
Works dealing with microscale LUR models have used dif-
ferent types of LCSs, including passive dosimeters, which
report period-averaged concentrations (Perelló et al., 2021a;
Su et al., 2009), time-dependent LCSs (Munir et al., 2020;
Weissert et al., 2019), or mobile LCS campaigns (Wang et al.,
2021). Due to the lack of experimental campaigns monitor-
ing consistently at high spatial and temporal (hourly) reso-
lutions over a whole year, current microscale LUR studies
typically cannot target the hourly averaged NO2 maximum
level (200 µgm−3) regulated by the 2008 European Union
Ambient Air Quality Directive (AAQD; 2008/EC/50).

Physics-based urban air quality models can generate
hourly pollutant concentration estimates, overcoming the
temporal limitation of microscale LUR models. Currently,
these systems usually consist of the coupling between a re-
gional chemical transport model, which accounts for the
long-range transport of pollutants, and an urban-scale dis-
persion model. The latter can be based on semi-empirical
relations, such as Gaussian dispersion models and mass ex-
change global parameterizations (e.g., Soulhac et al., 2017;
Kim et al., 2018; Benavides et al., 2019; Denby et al., 2020;
Hood et al., 2021), or an obstacle-resolving dispersion model
using computational fluid dynamics (Kwak et al., 2015; Au-
vinen et al., 2017). Despite the recent efforts to improve ur-
ban dispersion modeling systems, they are afflicted by per-
sistent uncertainties and biases, notably due to the difficulty
of prescribing accurate boundary conditions and emissions
at the street scale and reproducing the turbulent phenomena
within the urban canopy.

In order to reduce model uncertainties, data fusion meth-
ods can be employed to post-process model outputs and ob-
tain more reliable NO2 exposure maps. Several works have
used monitoring station data to build data fusion methods, ei-
ther by relying solely on urban dispersion models to explain
the spatial distribution (Tilloy et al., 2013) or by adding dif-
ferent spatial information (e.g., traffic intensity, satellite data,
or land use cover) as proxies in addition to the model out-
put (Horálek et al., 2006; Chen et al., 2019; Zhang et al.,
2021; Dimakopoulou et al., 2022). In urban areas, the usual
low density of monitoring stations has motivated the devel-
opment of data fusion methods that integrate LCS campaigns
to better explain the spatial distribution of NO2 at the street
scale. For instance, the works of Schneider et al. (2017) and
Mijling (2020) combine time-resolved LCS hourly data with
an urban model output to improve the NO2 characterization
at a high-spatial resolution. Schneider et al. (2017) use a pop-

ular geostatistics technique, universal kriging, which consid-
ers the time-aggregated annual mean of an urban model as
a basemap (or climatology) to explain the long-term spatial
gradients at the street scale, while the time-dependent LCS
network explains the short-term temporal behavior. However,
the temporal coverage of their results is restricted to a few
weeks in which measurements are available. Thus, this com-
promises their ability to systematically estimate hourly NO2
exposure levels for extended periods of the order of years.

By combining model and observational data, advanced
data fusion methods can provide typically unbiased estimates
of pollutant concentrations at the street scale. However, an-
other piece of information that is of crucial importance is
the uncertainty in the estimated concentrations, as it can help
with decision-making or support the design of environmental
epidemiological studies (Gryparis et al., 2009). The univer-
sal kriging methodology provides the error variance of its
predictions, which has already been used as a measure of the
uncertainty in the data fusion results of NO2 at the street scale
(Schneider et al., 2017). However, the validity of the confi-
dence intervals and the normality of error distribution in this
application remains to be investigated.

Our study presents a data fusion methodology considering
a microscale LUR model, in addition to the hourly monitor-
ing data, to bias correct hourly NO2 estimates of an urban
dispersion model at a high spatial resolution (20 m× 20 m).
Similar to Schneider et al. (2017), our work also relies on
the basemap concept. However, contrary to previous stud-
ies, we have derived it using a microscale LUR model based
on 844 samplers from recent passive dosimeter campaigns
(Perelló et al., 2021a; Benavides et al., 2019). Thus, the
basemap accounts for the spatial patterns, whereas the tem-
poral behavior is characterized by the hourly urban model
output and hourly monitoring data. This approach can be
very convenient for applying data fusion methods in cities
for which period-averaged LCS campaigns are available but
yearly time-dependent LCS data are lacking, which is usu-
ally the case. To assess the benefits of considering such a
microscale LUR basemap, we compare two different data fu-
sion methods, namely (i) universal kriging combining hourly
observations with the hourly outputs of a street-scale Gaus-
sian dispersion model (i.e., UK-DM) and (ii) universal krig-
ing combining the above items and the microscale LUR
model (i.e., UK-DM-LUR). The data fusion methods are ap-
plied in the city of Barcelona (Spain) for the entire year 2019.
An original aspect of the present study is the empirical val-
idation of the uncertainties based on universal kriging and
their translation into street-scale probabilities of exceeding
the NO2 hourly and annual regulatory thresholds.

The paper is structured as follows: the observational data
and study domain are described in Sect. 2.1. The Gaussian
dispersion air quality model, CALIOPE-Urban, used to pro-
duce hourly high-resolution fields of surface NO2 concen-
trations is described in Sect. 2.2, while the microscale LUR
method is explained in Sect. 2.3. A detailed description of the
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data fusion methods is given in Sect. 2.4. Results of the mi-
croscale LUR model are presented in Sect. 3.1, and Sect. 3.2
discusses the results of the data fusion methodologies. Fi-
nally, conclusions and final remarks are provided in Sect. 4.

2 Data and methodology

We compare two data fusion methods (UK-DM and UK-
DM-LUR; illustrated in Fig. 1). Below we describe each pro-
cess and dataset used to derive them.

2.1 Study domain and observational NO2 data

Barcelona (Fig. 2) is the second most populated city in Spain
and the 10th in Europe, with approximately 1 660 000 inhab-
itants and 102 km2 (∼ 16300 people per km2). It is located
on the northeastern coast of Spain, between the Mediter-
ranean Sea and the Collserola mountains. The city has a
Mediterranean climate characterized by the dominance of a
sea breeze during the warm season, shallow boundary layer
development, and the recirculation of air pollutants (Jorba
et al., 2004).

Hourly NO2 observational data for 2019 are obtained from
the Catalan Air Pollution Monitoring and Forecasting Net-
work (XVPCA) measurement points in the Barcelona urban
and surrounding areas. There are 13 stations available on the
Barcelona agglomeration (Fig. 2), with a percentage of avail-
ability of hourly data greater than 93 %. Gràcia and Eixam-
ple are urban traffic monitoring stations, Sagnier, Observa-
tori Fabra, and Jardins are suburban background stations, and
the remaining eight correspond to urban background stations.
The Observatori Fabra station is not used in our data fusion
methodology since its inclusion significantly degraded the
data fusion skills in the urban environment. This is expected,
since the station is located on a hill relatively far from built-
up areas. In fact, it is not exactly an urban station because
it measures air pollution above the urban canopy, while the
other stations measure pollution within the urban canopy. We
are aware that, by removing this station, we may lose relevant
information on the low-NO2-level regions surrounding the
city. However, the main goal of our urban model is to char-
acterize NO2 exceedances in critical trafficked areas. There-
fore, we decided to exclude the Observatori Fabra station.

Two different NO2 passive dosimeter experimental cam-
paigns (Fig. 3) are considered to derive the microscale LUR
model, namely the xAire citizen science campaign (Perelló
et al., 2021a, b) composed of 725 samplers deployed be-
tween 16 February and 15 March 2018 and the 2-week mea-
surement campaign of the Institute of Environmental As-
sessment and Water Research – Spanish National Research
Council (IDAEA-CSIC) that deployed 175 NO2 samplers
across Barcelona during February and March 2017 (Bena-
vides et al., 2019). Both campaigns used Palmes-type NO2
diffusion tubes (Palmes et al., 1976) to sample the NO2 lev-

els, which implies an estimated uncertainty of ±25 %, as re-
ported in Kuklinska et al. (2015).

2.2 Street-scale air quality model: CALIOPE-Urban

Hourly high-resolution concentrations of surface NO2 at the
street scale over the city of Barcelona are estimated using
the CALIOPE-Urban multiscale air quality model (Bena-
vides et al., 2019). CALIOPE-Urban accounts for the dis-
persion of traffic emissions at high spatial resolution using
the R-LINE Gaussian dispersion model (Snyder et al., 2013;
Venkatram et al., 2013). As described in more detail in Be-
navides et al. (2019), R-LINE is adapted to street canyons
by taking into account road link traffic emissions (Guevara
et al., 2020), meteorological variables (e.g., wind speed and
direction; Monin–Obukhov length and planetary boundary
layer height), and building morphology (e.g., building den-
sity and height and street orientation). The chemical balance
between NOx and NO2 is computed based on the generic re-
action set (Valencia et al., 2018), assuming clear-sky condi-
tions and uncoupling chemistry from transport phenomena.
In other words, the aging of pollutants is solely a function of
wind speed and the distance between the source and recep-
tors.

At the regional scale, CALIOPE-Urban relies on the
regional air quality modeling system CALIOPE (Bal-
dasano Recio et al., 2011) for predicting the urban back-
ground NO2 concentration. The regional CALIOPE accounts
for the long-range transport of pollutants using three nested
domains at increasing resolutions, namely 12 km× 12 km for
the European region, 4 km× 4 km for the Iberian Peninsula,
and 1 km× 1 km for the region of Catalonia (Baldasano Re-
cio et al., 2011; Pay et al., 2014). The urban background NO2
concentrations obtained with regional CALIOPE are com-
bined with the R-LINE dispersion results using a dedicated
parameterization of the vertical mixing (Benavides et al.,
2019).

In this work, CALIOPE-Urban employs a non-uniform
mesh that is refined at the edge of traffic roads and coarser
in low-gradient regions of NO2. This type of mesh acceler-
ates the calculations and reduces memory demand. The re-
fined grid zones have a resolution of 25 m× 25 m, progres-
sively degrading to 500 m× 500 m in the regions of low NO2
gradients. To facilitate their visualization, these NO2 concen-
trations are finally interpolated over a uniform mesh, with a
resolution of 20 m× 20 m. CALIOPE-Urban has been eval-
uated and successfully used in the framework of several im-
pact studies, including the works of Benavides et al. (2021)
and Rodriguez-Rey et al. (2022).

2.3 Microscale LUR model using gradient boosting
machine (GBM)

A nonlinear microscale LUR model based on passive
dosimeter campaigns is used to produce an observation-
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Figure 1. Workflow of the two studied data fusion methodologies. Hourly data from monitoring stations are combined with hourly dispersion
model results (UK-DM) and the time-invariant microscale LUR basemap (UK-DM-LUR). PBL stands for planetary boundary layer.

based climatological view of the NO2 concentrations at a
high spatial resolution over Barcelona. While the monitor-
ing stations and the urban dispersion model provide informa-
tion on the pollutants’ short-term temporal behavior, the mi-
croscale LUR basemap (long-term mean) remains constant
in time. Its main goal is to provide reliable long-term spatial
variability patterns of NO2 at a high resolution, using obser-
vational data and other urban information.

The target variable of the microscale LUR model is the
time-averaged concentrations of the two different NO2 ex-
perimental campaigns described in Sect. 2.1 and represented
in Fig. 3. We have discarded the xAire samplers related to
playgrounds and classrooms, so we are using the remain-
ing 669. In order to combine the xAire and IDAEA-CSIC
campaigns, we have annualized both, following the proce-
dure described in Perelló et al. (2021b). For each station, an
adjustment factor is computed as the ratio between the ob-
served 2017 annual mean and the average over the period of
the experimental campaign. Then, the average of this factor
over all stations is used to scale all passive samplers to the
2017 annual mean. This scaling assumes that the ratio does
not depend on the location and can be applied to all sam-
plers. Despite adding some noise to the experimental results,
it corrects the bias induced by environmental conditions (e.g.,
wind speed, atmospheric stability, precipitation, radiation,

and temperature) and also allows the combining of both cam-
paigns, producing a dataset of 844 samplers on which the
microscale LUR model relies. Note that the microscale LUR
model is trained using experimental campaigns deployed in
February and March. As a result, even though the annualiza-
tion process corrects the NO2 levels and the predictors are
expressed as annual averages, the captured spatial gradients
may still have a significant seasonal bias.

The potential predictors of the microscale LUR model are
shown in Table 1. The geometric variables are calculated
from the Institut Cartogràfic i Geològic de Catalunya (ICGC,
2019) and Plan Nacional de Ortografía Aérea (PNOA, 2020).
Traffic-related predictors consist of traffic density (t) for dif-
ferent circular buffer sizes. With a being the radius of the
buffer, ta is computed following Eq. (1; expressed in vehi-
cles per m s−1):

ta =

n∑
i=1

AATi · la,i, (1)

where i represents the street segment, n is the number of
street segments over the circular area of πa2, li is the length
of the street segment i within the buffer of radius a, and AATi
is the annual average traffic of the street segment i (expressed
in vehicles per second). The ta predictors associated with the
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Figure 2. Domain of study and location of the referenced mon-
itoring stations. The map has been generated using the ggplot2
(Wickham, 2016) and ggmap (Kahle and Wickham, 2013) R pack-
ages (R Core Team, 2013) and data from OpenStreetMap. © Open-
StreetMap contributors 2017, distributed under the Open Data Com-
mons Open Database License (ODbL) v1.0. Map tiles are by © Sta-
men Design, under a Creative Commons Attribution (CC BY 3.0)
license.

smaller buffers (5, 10, and 15 m) have highly skewed distri-
butions, given that most values across the map are null. To
avoid training the microscale LUR with skewed predictors,
we introduce the traffic-scaled variable s here, which com-
bines all buffers as follows:

s =
1
N

∑
a

ta

πa2 , (2)

where N is the number of buffers (12 in our case). Traf-
fic data are extracted from the road link traffic network of
the HERMESv3 bottom-up emission model (Guevara et al.,
2020). We also considered NO2, the planetary boundary
layer height, and the wind speed annual averages from the
regional air quality modeling system CALIOPE as potential
predictors, together with the NO2 annual mean from the air
quality model CALIOPE-Urban.

A recursive feature elimination method has been applied to
remove highly correlated or uninformative features. We have
used the simple backward-selection algorithm implemented
in the R package caret (Kuhn, 2008), which starts with the
full-featured model and gradually removes the least impor-

tant feature, while monitoring the RMSE in cross-validation
(CV). The goal is to obtain the simplest model with the low-
est RMSE to gain generalization and interpretability. The fi-
nal microscale LUR model includes the following eight pre-
dictors: average building density, traffic buffers of 25 and
100 m, traffic-scaled variable s, all the annually averaged
data from the regional CALIOPE modeling system (NO2, the
planetary boundary layer height, and the wind speed), and the
NO2 annual mean from CALIOPE-Urban.

To account for nonlinear relations among the predictors
and the target variable, we used the gradient boosting ma-
chine (GBM) algorithm implemented in the R package gbm
(Greenwell et al., 2022). GBM is a popular machine learn-
ing algorithm (Natekin and Knoll, 2013) that has shown
excellent results in terms of accuracy and generalization
when compared to other learning algorithms (Caruana and
Niculescu-Mizil, 2006). The GBM hyperparameters (shrink-
age rate, interaction depth, minimum observation per node,
and bag fraction) are optimized based on the minimum mean
cross-validated error and a grid search algorithm. Addition-
ally, following the work of Chen et al. (2019), we exploit the
potential spatial correlation of the GBM residuals by inter-
polating and adding them to the predicted values. The inter-
polation is done with ordinary kriging (Wackernagel, 2003).

One could think that skipping over the LUR computation
by directly using all of its time-invariant information (passive
dosimeter campaigns, urban geometry, traffic-related data,
and annually averaged model results) as covariates in the
universal kriging methodology would simplify the workflow.
However, there are two main drawbacks to doing so. On the
one hand, in contrast to GBM, universal kriging assumes
linear relations between covariates and the observed NO2,
which is not necessarily true for this case. On the other hand,
when considering a large number of covariates with only
12 monitoring stations, strong spurious correlations lacking
physical meaning are prone to happen, which drive the fi-
nal solution wrongly (Hengl et al., 2007). Thus, gathering all
static information into a single LUR covariate offers more ro-
bust results, while permitting the addition of predictors using
nonlinear regression models.

2.4 Universal kriging as a data fusion methodology for
spatial bias correction

The microscale LUR model and the hourly CALIOPE-Urban
outputs are combined with observational NO2 data from the
monitoring stations using the geostatistical technique of uni-
versal kriging, which is commonly used for spatial interpo-
lation. This methodology predicts a random variable Z at
a target point x, based on a combination between a (multi-
)linear regression analysis with external variables f , referred
to as covariates, and a pure spatial interpolation considering
the autocorrelation structure of the regression residuals. In
our case, the variable Z corresponds to the monitoring data,
while the covariates are CALIOPE-Urban and our microscale
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Figure 3. Sampler locations of the two different NO2 experimental campaigns used to train the microscale LUR model. The left panel shows
the NO2 values and the locations of the combined campaigns. The top-right and bottom-right panels show the CSIC and xAire campaign
locations, respectively. The color scale refers to the 2017 annualized NO2 values (in µgm−3). The map has been generated using ggplot2
(Wickham, 2016) and ggmap (Kahle and Wickham, 2013) R packages (R Core Team, 2013) and data from OpenStreetMap. © OpenStreetMap
contributors 2017, distributed under the Open Data Commons Open Database License (ODbL) v1.0. Map tiles are by © Stamen Design, under
a Creative Commons Attribution (CC BY 3.0) license.

Table 1. The microscale LUR model contemplates the use of these 21 potential predictors.

Type No. Variable Resolution

Urban geometric

1 Average building density

Square buffer of 250 m× 250 m
2 Average building height
3 Maximum building height
4 Standard deviation building height

Traffic related 5–16 Simulated vehicular traffic densities Circular buffers of 5, 10, 15, 25, 50, 100, 300, 500,
1000, 2000, 3000, and 4000 m of radius

17 Traffic scaled Linear combination of the buffers above

Output from the 18 NO2 Uniform mesh of 1 km× 1 km
regional modeling system 19 Planetary boundary layer height
CALIOPE (lowest layer) 20 Wind speed

Output from the 21 NO2 Non-uniform mesh (25 m× 25 m to 500 m× 500 m)
CALIOPE-Urban model
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LUR model. A simple (multi-)linear regression model is con-
venient here, given the low number (12) of available moni-
toring stations within the computational domain. Universal
kriging assumes the following relation (Cressie, 1993):

Z(x)=
L∑
l=0

alfl(x)+R(x), (3)

where L equals 1 in the UK-DM approach and 2 in the UK-
DM-LUR, al are the non-zero coefficients from the (multi-
)linear regression between the observations and the covari-
ates fl (with f0(x)= 1 by convention), and R(x) is the resid-
ual random field. The deterministic part of the variable Z is
explained by a linear combination of the covariates, while
the residual random field is considered to have zero mean
and to be spatially autocorrelated. The main advantage of this
method is that, depending on the strength of the correlation
between covariates and observations, universal kriging gives
more weight either to the (multi-)linear regression or to the
spatial interpolation of the residuals (Hengl, 2009), thus pro-
viding a robust data fusion method that adapts to the quality
of the model output.

As a Gaussian process, universal kriging estimates the
variance of its predictions (σ 2) coming from both the (multi-
)linear regression (σ 2

MLR) and the spatial interpolation (σ 2
SI)

steps, as follows:

σ 2(x)=
m∑
α=1

wα · γR(xα − x)︸ ︷︷ ︸
σ 2

SI

+

L∑
l=0

λlfl(x)︸ ︷︷ ︸
σ 2

MLR

, (4)

where m is the number of monitoring stations, wα are the
spatial interpolation weights associated with each measure-
ment point, λl are the L+ 1 Lagrangian multipliers used to
minimize the variance error, and γR(xα − x) stands for the
variogram which characterizes the spatial structure of the
residuals (Chiles and Delfiner, 1999). Thus, the variance of
a prediction reflects how far the unmeasured location is from
the observation points and from the feature space in which
the regression model has been calibrated, i.e., the extrapola-
tion effect (Hengl, 2009). Our universal kriging implemen-
tation relies on the R package gstat (Pebesma, 2004; Gräler
et al., 2016).

To normalize the distribution of the NO2 data and to en-
sure positive predicted values, we have applied the universal
kriging technique described above after transforming NO2
data into the log space. However, the results need to be
back-transformed to the original scale. Following the work
of Cressie (1993), the back-transformation is performed as
follows:

Ẑ(x)= exp(Zl(x)+ σ 2
l (x)/2), (5)

σ̂ 2(x)= (exp(σ 2
l (x))− 1) · exp(2 ·Zl(x)+ σ 2

l (x)), (6)

where Ẑ(x) and σ̂ 2(x), respectively, represent the back-
transformed prediction and variance at the target point, while

Zl(x) and σ 2
l (x) are the prediction and variance in the log

space, respectively.
Assuming a normal distribution of the error, the probabil-

ity of exceedance (P) of a certain limit value (L) can be com-
puted as follows (Horálek et al., 2008):

P(x)= 1−F

(
L− Ẑ(x)
σ̂ (x)

)
, (7)

where F is the normal cumulative distribution function.

2.4.1 Statistical metrics to evaluate data fusion skills

Statistical performance is assessed by leave-one-out cross-
validation (LOOCV), which consists of performing the data
fusion by considering all of the monitoring stations, except
for one that is kept to cross-validate the results. For each
LOOCV, we present the coefficient of efficiency (COE), the
root mean square error (RMSE), the mean bias (MB), and the
correlation coefficient (r), defined as follows:

COE= 1−
∑k
i=1|Mi −Oi |∑k
i=1|Oi −O|

(8)

MB=
1
k

k∑
i=1

Mi −Oi (9)

r =
1

k− 1

k∑
i=1

(
Mi −M

σM

)(
Oi −O

σO

)
(10)

RMSE=

√√√√1
k

k∑
i=1
(Mi −Oi)

2, (11)

where k is the total number of observations, Oi and Mi are
the observed and modeled i values, respectively, O and M
are their respective means, and σO and σM refer to their stan-
dard deviation.

2.4.2 Spatial autocorrelation structure of NO2 levels

In the universal kriging context, the variogram describes the
spatial autocorrelation structure of the residual random field.
In our case, the limited number of monitoring stations makes
it challenging to extract a meaningful spatial structure. For
this reason, we estimate the residual variogram based on
the dosimeter campaigns. This decision, however, entails a
substantial limitation due to the assumption of a static var-
iogram. We rely only on the IDAEA-CSIC campaign (dis-
carding the xAire campaign for the variogram derivation) to
avoid extra premises for the combination of campaigns. Ad-
ditionally, we considered an isotropic variogram. All of these
postulates impact the variance error estimated by universal
kriging (Brus and Heuvelink, 2007). To assess the impact of
such assumptions, an analysis of the estimated variance in
LOOCV is carried out in Sect. 3.2.
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The variogram is fitted using the Matérn model with
Stein’s parameterization implemented in the R package au-
tomap (Hiemstra et al., 2009), setting the smoothing param-
eter κ = 0.2. The resulting variogram model is characterized
by a 5× 10−2 partial sill, 3× 10−5 nugget, and a range of
620 m. Following the work of Denby et al. (2007), we have
optimized the range value to minimize the RMSE of univer-
sal kriging. The range estimates the distance at which the
data are no longer correlated. To optimize it, we performed
an hourly LOOCV by varying the range from 1 to 10 km for
every 1 km, while keeping all other model parameters con-
stant. We obtained the best results for the range of 5 km,
which improved the r coefficient by 4 %, the COE by 14 %,
and the RMSE by −9 % on average over all monitoring sta-
tions, compared to the UK-DM-LUR methodology that used
the original range of 620 m.

2.4.3 Statistical quality assurance of the (multi-)linear
regression

The correlation coefficient (r) and the regression coeffi-
cient (slope) of the regression model between covariates
(CALIOPE-Urban and the microscale LUR model) and ob-
servations are checked before the covariates are included in
the universal kriging workflow (as indicated in Fig. 1). If a
covariate shows a low correlation (p value > 0.05) with the
observations at a specific hour, then it is not considered in
the regression model, as in the works of Zhang et al. (2021)
and Oh et al. (2021). Additionally, if none of the covariates
shows a significant correlation, then we use both covariates
to build the regression model. However, to avoid nonphysical
hourly maps, the covariates are used only if their regression
coefficient is positive, as suggested by Denby et al. (2007).
In case all of the regression coefficients are negative, or there
are fewer than four observations available in a specific hour,
universal kriging is not performed, and the results of the data
fusion method are directly the raw dispersion–model output.
Following the above criteria, the percentage of cases with
fewer than four monitoring observations is relatively small,
0.034 % (3 h), and is the same for each kriging application.
For the UK-DM methodology, 14.11 % of the hours have not
been corrected due to negative regression coefficients. On the
other hand, for the case of UK-DM-LUR, only 1.47 % of the
hours have been discarded due to a negative regression coeffi-
cient in both covariates. As Benavides et al. (2019) identified,
the poor skills of the urban model are attributed to low wind
speeds and atmospheric stability situations, which cause the
performance of the mesoscale model to decrease. Concern-
ing the static microscale LUR basemap, the poor correlation
on an hourly basis is associated with hours that significantly
deviate from the average behavior.

Figure 4. Scheme of the outer 10-fold CV and the inner 4-fold CV
applied for the GBM training.

3 Results and discussion

The results are organized into two sections. First, in Sect. 3.1,
we estimate the microscale LUR model performance and
present the obtained NO2 basemap. Second, in Sect. 3.2, the
data fusion methodologies are discussed in terms of statisti-
cal performance, uncertainty quantification, and exceedance
probability maps. All the maps presented in this section
have been generated using the ggplot2 (Wickham, 2016) and
ggmap (Kahle and Wickham, 2013) R packages (R Core
Team, 2013) and data from Open Data BCN (Ajuntament
de Barcelona, 2019) and OpenStreetMap (© OpenStreetMap
contributors 2017, distributed under the Open Data Com-
mons Open Database License (ODbL) v1.0. Map tiles are by
© Stamen Design, under a Creative Commons Attribution
(CC BY 3.0) license).

3.1 Microscale LUR model

3.1.1 Performance assessment

The GBM-based microscale LUR model is evaluated using
two nested K-fold CVs, with the inner one for tuning the
model (training–validation set) and the outer one for testing
the model on different parts of the dataset (test set). Such a
procedure aims at giving a reliable estimate of the expected
performance. We use an outer 10-fold CV and an inner 4-
fold CV, as illustrated in Fig. 4. The tuning of the model is
performed through a grid search over the following hyperpa-
rameters: shrinkage rate (with values ranging from 0.001 to
0.05 every 0.001), the interaction depth (from 1 to 4 every 1),
the minimum observation in a node (from 5 to 15 every 1),
and the bag fraction (0.5 and 0.65).

The results are given in Table 2, together with the per-
formance reference of the annual mean NO2 concentration
obtained directly from CALIOPE-Urban. As explained in
Sect. 2.3, we exploit the spatial autocorrelation of the LUR
residuals to improve its estimation. To do so, the microscale
LUR residuals at the training locations are interpolated at the
test locations by applying an ordinary kriging. Then, they are
added to the predictions to obtain the corrected results (see
values for “test set adding the residuals” in Table 2).
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Table 2. Statistical results of the microscale LUR model in nested CV. The 2017 annual mean concentration of NO2 of the raw dispersion
model (CALIOPE-Urban) is also shown. The parameter n stands for the number of data points used to compute the statistics.

Model n COE MB r RMSE
(µgm−3) (µgm−3)

Microscale LUR
Training–validation set 7600 0.30 0.15 0.69 11.38
Test set without adding the residuals 840 0.24 0.22 0.62 12.17
Test set adding the residuals 840 0.27 −0.27 0.64 11.87

Raw CALIOPE-Urban Annual mean 840 0.13 −0.81 0.54 13.68

Table 2 shows that the microscale LUR model signifi-
cantly improves the CALIOPE-Urban results. Also, the ad-
dition of the residuals slightly increases the statistical perfor-
mance. The training–validation set results are not perfectly
fitted and are only slightly better than the test set results, in-
dicating that the microscale LUR is not overfitted and has
good capabilities for the prediction of unseen data.

In Fig. 5, we show the scatterplots of the CALIOPE-Urban
annual mean and the test set results with and without adding
the residuals, along with the observational uncertainty ranges
indicated by the dashed red lines (±25 %, according to Kuk-
linska et al., 2015). Although a large portion of the predicted
values for the microscale LUR model with the residual cor-
rection lies within the uncertainty range, difficulty can be ob-
served in predicting values of NO2 higher than 80 µgm−3.
We attribute this behavior to not only the limited number of
points in this range, which can weaken the model training,
particularly in the nested CV context, but also to the already
poor predictive skills of CALIOPE-Urban in this concentra-
tion range (as seen in Fig. 5a).

Comparing these results with previous works, the result-
ing correlation coefficient (r) is lower than a LUR model
fitted with the xAire campaign data (r = 0.74 in LOOCV),
as reported in Perelló et al. (2021a). However, Perelló et al.
(2021a) used only 370 outdoor sampling sites out of the
669 available. They excluded samplers close to traffic and
street intersections, achieving a skilled urban LUR model.
Even if the r coefficient is slightly lowered, we have consid-
ered all outdoor sampling sites (along with the IDAEA-CSIC
campaign) to capture, as much as possible, the NO2 spatial
trends. On the other hand, the work of Munir et al. (2020) re-
ported a microscale LUR model based on 40 time-dependent
LCSs with slightly lower performance in the CV than the
present one (r = 0.56). Moreover, Munir et al. (2020) also
reported a r value of 0.53 when the nonlinear LUR model
is based on the combination of 188 period-averaged and 40
time-dependent LCSs. A key aspect of the present data fu-
sion methodology is that the microscale LUR model results
explain better the annualized passive dosimeter campaigns
compared to the reference CALIOPE-Urban annual mean.
Therefore, they are subsequently considered to be a covariate
in the universal kriging methodology, as further explained in
Sect. 3.1.2. An assessment regarding the necessary number

of samplers to derive a robust microscale LUR is presented
in Appendix A.

3.1.2 Microscale LUR basemap

We proceed to train the microscale LUR model with the
residual correction using all available sampling sites. Fig-
ure 6 compares the long-term NO2 patterns from the mi-
croscale LUR basemap (Fig. 6a) with the NO2 2019 annual
mean of CALIOPE-Urban (Fig. 6b). Notice that the goal of
the basemap is to correct the long-term spatial variability in
NO2. Thus, Fig. 6 highlights the differences in spatial pat-
terns rather than differences in absolute NO2 values. The re-
sulting basemap shows a qualitatively consistent NO2 distri-
bution; the major trafficked roads of the city and the port area
are the most polluted locations, while the Collserola moun-
tains and the sea bordering the city have moderate NO2 lev-
els. Although both figures show similar NO2 patterns, local
differences from experimental information can be observed
in Fig. 6a. For instance, there is a noticeable increase in NO2
levels for the microscale LUR basemap in the mountainous
northwestern area of the study domain. This artifact is proba-
bly caused by the spatial distribution of the passive dosimeter
campaigns (Fig. 3), which poorly cover this region. The NO2
overprediction of this area is not reflected in the statistical
evaluation of the data fusion since we deliberately omitted
the monitoring station located in this area. We excluded this
station to improve the data fusion model’s ability to capture
NO2 exceedances in built-up areas, which is the main goal
of the urban model. As further shown in the statistical re-
sults, considering extensive passive dosimeters information
through the microscale LUR model avoids relying only on
the urban model to describe the NO2 gradients and signifi-
cantly improves the data fusion methodology.

The influence of each predictor in the final microscale
LUR model has been computed based on the methodology
proposed by Friedman (2001) and implemented in the R
package gbm (Greenwell et al., 2022), in which the relative
importance of each variable is associated with the reduction
in the GBM cost function. Given the chosen set of predictors,
the most influential variable is the NO2 CALIOPE-Urban an-
nual mean with a relative importance of 25.1 %, followed by
17.7 % for the traffic scaled variable and 15.7 % for the aver-
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Figure 5. (a) Raw annual mean of CALIOPE-Urban NO2 concentrations, (b) microscale LUR model results, without the interpolated
residuals, and (c) microscale LUR model results, with the interpolated residuals, versus the annualized passive dosimeter campaigns. These
figures use the test sets in which the performance of the microscale LUR model has been assessed. The dashed red lines report passive
dosimeter uncertainty (±25 %), and the identity line is represented in blue. The statistical results are shown in Table 2.

Figure 6. (a) Resulting microscale LUR basemap using all available sampling sites and adding the interpolated residuals. (b) The 2019
annual mean concentration of NO2 of the raw dispersion model CALIOPE-Urban.

age building density. The other predictors exhibited a relative
influence under the 15 %, with the NO2 CALIOPE regional
annual mean as the lowest one with 4.3 %.

3.2 Data fusion methodologies

3.2.1 Statistical evaluation

In order to quantify the added value of including the mi-
croscale LUR basemap in the data fusion methodology, two
different post-processes (see Fig. 1) have been carried out.

First, the output of the urban dispersion model CALIOPE-
Urban is merged with the monitoring data using univer-
sal kriging, named UK-DM. Second, the microscale LUR
basemap is added as a covariate in the universal kriging
workflow, named UK-DM-LUR.

Hourly statistical results for the raw CALIOPE-Urban,
UK-DM, and UK-DM-LUR models are shown in Fig. 7 for
each monitoring station using all available data of 2019.
UK-DM and UK-DM-LUR results have been computed in
LOOCV, as explained in Sect. 2.4. Gràcia and Eixample
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Figure 7. Statistical results for each station after applying UK-DM and UK-DM-LUR to 2019 hourly data in LOOCV. In addition, we show
the statistical results for the CALIOPE-Urban estimates at each station. All stations refer to the average over all stations.

are the urban traffic monitoring stations, and the last row in
Fig. 7 corresponds to the average results over all stations.
This figure shows that the hourly scale post-processing con-
sistently improves all studied statistical metrics at all moni-
toring stations, regardless of their type. Moreover, adding the
microscale LUR basemap as a covariate (UK-DM-LUR) fur-
ther improves the spatial correction at all stations and for all
statistical metrics, except for the MB, which does not have
a clear trend. A negative COE value reflects a poor predic-
tive capacity, so we highlight that both data fusion methods
achieve a positive COE at all considered stations. Almost all
stations show a positive MB for CALIOPE-Urban, indicat-
ing a general overestimation of the model, while UK-DM
and UK-DM-LUR present almost null MB averaged over
all stations. The overestimation of CALIOPE-Urban in the
monitoring stations may seem contradictory, with the nega-
tive bias presented in Table 2 for the passive dosimeter cam-
paigns. However, this could indicate that the highest NO2
values in Barcelona are not routinely monitored, as already
pointed out in the work of Duyzer et al. (2015b). Regard-
ing the RMSE, the averaged reduction between CALIOPE-
Urban and UK-DM is about 32 % and 24 % between UK-
DM and UK-DM-LUR. For the r coefficient, an averaged
improvement of 29 % between CALIOPE-Urban and UK-
DM is observed, while the improvement between UK-DM
and UK-DM-LUR is 13 %.

3.2.2 Uncertainty quantification

The uncertainty in the universal kriging predictions is esti-
mated from the (multi-)linear regression and the spatial inter-
polation variances, as formulated in Eq. (4). The spatial inter-
polation is based on the variogram, which has been modeled
from a period-averaged passive dosimeter campaign; thus, it
assumes a static behavior, as pointed out in Sect. 2.4.2. Addi-
tionally, the variogram is considered isotropic for simplicity,

Table 3. Percentages of observations falling in the ±σ̂ , ±2σ̂ , ±3σ̂
confidence intervals, using all stations in LOOCV during 2019.
Confidence intervals are computed based on the hourly predicted
values and their standard deviation.

±1σ̂ ±2σ̂ ±3σ̂

Nref 68 % 95 % 99,7 %
UK-DM 47.9 % 78.0 % 91.3 %
UK-DM-LUR 51.2 % 81.3 % 92.9 %

while we know that, in the urban scale, the NO2 autocorre-
lation structure may vary significantly, depending on the di-
rection with respect to traffic road links. These assumptions
directly impact the error variance estimated by the universal
kriging, σ̂ 2. Considering that the interpolation error is nor-
mally distributed (Nref), the observation at a specific monitor-
ing station when performing a LOOCV should be within±σ̂
of the predicted value for 68 % of the time, while being 95 %
and 99.7 %, respectively, for ±2σ̂ and ±3σ̂ , as indicated in
Table 3. To assess the normality of these distributions, Ta-
ble 3 reports an empirical validation of the percentage of ob-
servations falling within the corresponding error range, again
computed in LOOCV. These percentages show that the un-
certainty is underpredicted for both methods. However, the
overconfident UK-DM-LUR results are slightly better than
the UK-DM ones.

To better understand the behavior of uncertainty estimates,
in Fig. 8 we show the probability density functions (PDFs) of
the hourly bias, normalized by the error standard deviation
σ̂ , for UK-DM and UK-DM-LUR, using all studied moni-
toring stations in LOOCV over all available hours in 2019.
The error PDFs have normal trends with a slightly negative
skew and are overconfident, in accordance with Table 3. Both
methodologies, especially UK-DM, exhibit negative skew-

https://doi.org/10.5194/gmd-16-2193-2023 Geosci. Model Dev., 16, 2193–2213, 2023



2204 A. Criado et al.: Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona

Figure 8. PDF of the hourly bias, normalized by the universal krig-
ing standard deviation, for all monitoring stations in LOOCV dur-
ing 2019. The PDFs correspond to the reference normal distribution
(Nref), UK-DM, and UK-DM-LUR hourly results.

ness. This is because the corrected model struggles to capture
the infrequent high-pollution peaks, tending to underestimate
them significantly instead. Thus, negative biases (Mh <Oh)
are rare but stronger. On the other hand, the model tends
to overpredict moderate observed values slightly. Therefore,
positive biases (Mh >Oh) are more frequent and less severe.
In agreement with the overall null bias, the rare strong under-
estimations are compensated by frequent moderate overesti-
mations.

In addition, in Fig. 9, the PDFs are computed by split-
ting the observed NO2 concentration levels in three different
ranges, namely less than 40 µgm−3, greater than 100 µgm−3,
and between 40 and 100 µgm−3. These PDFs allow us to
study the behavior of the error distribution for different NO2
values. This figure shows that larger concentration levels tend
to be underestimated, while the smaller ones are overesti-
mated. In all ranges and for both methodologies, the normal
trends of the error PDFs are conserved, with the intermediate
ranges being the closest to the theoretical normal distribu-
tion.

3.2.3 Street-scale maps

We first analyze the annual mean concentration levels of
NO2. Table 4 presents the evaluation in LOOCV of the re-
sults post-processed by the UK-DM and the UK-DM-LUR
methodologies applied directly to the 2019 annual mean.
The presented statistics are computed using a single NO2-
averaged value for each station. The annually based statistics
are similar to the hourly results shown in Fig. 7. However,
there is a substantial drop in the RMSE associated with the
bias compensation when averaging the hourly data.

Table 4. Statistical results using the 12 monitoring stations after
applying UK-DM and UK-DM-LUR directly to the annual averages
in LOOCV.

COE MB r RMSE
(µgm−3) (µgm−3)

UK-DM 0.25 0.20 0.74 3.93
UK-DM-LUR 0.38 0.37 0.83 3.24

Figure 10 presents the NO2 annual mean, its associated
relative uncertainty, and the probability map of values ex-
ceeding the NO2 annual limit value of 40 µgm−3 (AAQD
2008/EC/50) for both UK-DM and UK-DM-LUR method-
ologies. The annual mean levels combining the raw model
with the monitoring stations data (UK-DM; Fig. 10a) have
similar trends to the raw CALIOPE-Urban (Fig. 6b). How-
ever, pollution levels are significantly reduced. Adding the
passive dosimeter information through the microscale LUR
basemap (UK-DM-LUR; Fig. 10d) slightly increases NO2
concentrations, particularly in the city center and secondary
roads, where the microscale LUR basemap (Fig. 6a) exhibits
steeper NO2 gradients than CALIOPE-Urban (Fig. 6b).

As expected, the areas surrounding the monitoring sta-
tions (presented in Fig. 2) show lower relative uncertainty,
as can be seen in Fig. 10b and e. The higher uncertainty re-
gions, on the other hand, correspond to areas far from the
monitoring sites, and areas with extreme concentration lev-
els, which causes an extrapolation effect in the regression
model. When comparing the two uncertainty maps (Fig. 10b
and e), UK-DM-LUR has regions with higher relative uncer-
tainty than UK-DM. This behavior is due to the addition of
the microscale LUR covariate, which increases the standard
deviation associated with the regression model. In addition,
some localized regions of high uncertainty can be observed
in Fig. 10e. They are associated with the locations of the pas-
sive dosimeters and trafficked roads, where the microscale
LUR covariate has caused an increase in NO2 concentrations,
thereby raising the level of extrapolation in the regression
model. The high uncertainty values in the upper-left corner
of Fig. 10b and e correspond to the low NO2 levels pre-
dicted in the Collserola mountains. These high-uncertainty
values can be reduced by considering the Observatori Fabra
station, which is located in this area. However, as explained
in Sect. 2.1, we excluded this station since its inclusion de-
creases the data fusion model’s ability to predict high NO2
values in critical trafficked areas.

Regardless of the data fusion method, the most polluted re-
gions correspond to probabilities exceeding the annual limit
above 0.7, as shown in Fig. 10c and f. When considering
the UK-DM-LUR method, 13 % of the Barcelona munici-
pality area has a 0.7 or higher probability of exceeding the
annual limit, and this percentage rises to 30 % when consid-
ering probabilities equal to or higher than 0.5. The Eixam-
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Figure 9. PDFs by observed NO2 ranges of the hourly bias, normalized by the standard deviation error, for all monitoring stations in LOOCV
during 2019 for (a) UK-DM and (b) UK-DM-LUR applications.

ple district, which is the most polluted, while being the most
populous and densely populated (approximately 270 000 in-
habitants and 36 000 inhabitants per square kilometer, ac-
cording to Ajuntament de Barcelona, 2019), has 95 % of its
area exceeding the annual limit, with a probability equal to or
higher to 0.5 and 69 % in the case of 0.7. Thus, significant ev-
idence indicates that the NO2 annual legal limit was broadly
exceeded in Barcelona in 2019. Stronger evidence could be
obtained by reducing the uncertainty associated with the re-
sults, either by using a better-correlated urban model or by in-
creasing the monitoring system’s coverage. To test a more re-
strictive threshold, we have analyzed the annual exceedance
probability maps using the recommended WHO 2021 an-
nual limit of 10 µg m−3 (WHO, 2021), obtaining probabili-
ties above 0.9 across the domain for both methodologies (not
shown here).

Figure 11 presents the NO2 prediction at a specific hour,
its associated relative uncertainty, and the exceedance prob-
ability map based on the 200 µgm−3 NO2 hourly threshold
(AAQD 2008/EC/50) for the UK-DM-LUR methodology.
The goal is to illustrate that, apart from studying the long-
term NO2 values, the present methodology can also be used
to correct short NO2 exposure episodes, such as the ones ob-
served during traffic rush hours. Figure 11 corresponds to
the peak traffic hour at 09:00 UTC on 28 February 2019,
which was a particularly polluted hour, reporting 138 and
201 µgm−3 at the traffic monitoring stations of Eixample and
Gràcia, respectively. Similar to Fig. 10, low-uncertainty re-
gions are obtained around the locations of the monitoring
stations. Likewise, high relative uncertainty regions are as-
sociated with pollution hotspots due to the extrapolation ef-
fect in the regression step. Concerning the exceedance prob-
ability maps shown in Fig. 11c, the city center and its major
trafficked streets have the highest values (> 0.7). In the Eix-
ample district, 19 % of the area exceeds the NO2 hourly limit,

with a probability equal to or higher than 0.5 and 6 % in the
case of 0.7.

4 Conclusions

The present work assesses the added value of including a
microscale LUR basemap into a data fusion method to ob-
tain spatially bias-corrected urban maps of NO2 at the hourly
scale. To do so, we have compared two different data fusion
methods, namely (i) merging an urban dispersion model with
the observational data coming from 12 monitoring stations,
using universal kriging (UK-DM), and (ii) adding a nonlinear
microscale LUR model as a covariate in the kriging workflow
based on the GBM algorithm (UK-DM-LUR). The compari-
son is based on the statistical performance in LOOCV at each
monitoring station, the resulting NO2 maps, and their associ-
ated uncertainty.

The statistical performance of the microscale LUR model
has been assessed using a comprehensive nested CV. As
expected, the obtained microscale LUR basemap (r =
0.64; RMSE= 11.87 µgm−3) outperformed the raw annu-
ally averaged dispersion model results (r = 0.54; RMSE=
13.68 µgm−3), highlighting the convenience of using passive
dosimeter campaigns to explain the spatial distribution of
NO2. Moreover, a novel traffic density variable based on the
combination of different traffic buffer sizes has been shown
to have a significant influence (17.7 %) in the microscale
LUR basemap, suggesting its relevance in future microscale
LUR models.

Adding the microscale LUR time-invariant spatial infor-
mation (UK-DM-LUR) has been demonstrated to signifi-
cantly improve the skills of the more straightforward data
fusion UK-DM method at the hourly scale, increasing the r
coefficient by 13 % and reducing the RMSE by −24 % on
average over all monitoring stations during 2019. Thus, our
results suggest that data fusion methods applied at the street
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Figure 10. (a) NO2 2019 annual map resulting from applying UK-DM with the annual values. (b) Relative uncertainty associated with the
predictions in panel (a). (c) Annual probability map of values exceeding the 40 µgm−3 NO2 limit, using the values in panels (a) and (b).
(d) NO2 2019 annual map resulting from applying UK-DM-LUR with the annual values. (e) Relative uncertainty associated with the predic-
tions in panel (d). (f) Annual probability map of values exceeding the 40 µgm−3 NO2 limit, using the values in panels (d) and (e).

scale benefit from high-spatial-resolution data such as pas-
sive dosimeter campaigns, urban morphology, or traffic in-
tensity estimates. When using only monitoring stations in the
data fusion approach, the spatial patterns of NO2 mainly rely
on the urban model patterns. Generally, the better the tempo-
ral and spatial coverage of observational data, the better the
statistical performance that can be achieved.

To check the consistency of the estimated uncertainty, we
have empirically validated the universal-kriging-based un-
certainties through a LOOCV. Despite the predicted vari-
ance of the universal kriging being slightly overconfident
and tending to degrade for extreme concentration values, we
found that it is a meaningful estimation of uncertainty. The
PDFs of the error are close to the normal distribution, espe-
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Figure 11. (a) Hourly NO2 concentration map as a result of applying the UK-DM-LUR methodology at 09:00 UTC on 28 February 2019.
(b) Relative uncertainty associated with the predictions in panel (a). (c) Hourly probability map exceeding the 200 µgm−3 NO2 hourly
averaged limit, using the values in panels (a) and (b).

cially for the UK-DM-LUR approach. The spatial character-
ization of the uncertainty adds value to the NO2 concentra-
tion maps, making data fusion results more comprehensive
for regulatory purposes, decision-makers, and health impact
assessment. For instance, uncertainty maps can be used to al-
locate new observational stations or to plan future LCS cam-
paigns. In this regard, our results show that pollution hotspots
are areas of high uncertainty that are underrepresented by the
current monitoring system. We thus stress the need to mon-
itor the vicinity of heavily trafficked roads better to increase
the performance of data fusion methods in predicting hourly
and annual exceedances.

In developing our microscale LUR model, a limitation
arises when using campaigns conducted between February
and March. Although the annualization adjustment factor
corrects the NO2 values, the spatial patterns are still linked
to the period of the campaigns. If additional campaigns from
different seasons of the year were available, then assessing
the seasonal bias effects on the spatial gradients would be
highly interesting. Ideally, the basemap should be on a sea-
sonal scale rather than a yearly scale. This highlights room
for a potential improvement in our methodology because we
could not quantify this in the present analysis due to the lack
of experimental campaigns during other seasons of the year.
Another limitation identified is that the Observatori Fabra
station has been excluded from the data fusion methodol-
ogy because its inclusion worsened the results in the urban

environment. Although its exclusion means losing relevant
information regarding low-NO2-level areas, the primary ob-
jective of the urban model is to identify NO2 exceedances in
highly trafficked areas.

Local authorities frequently conduct air quality diagnoses
based solely on available monitoring stations, resulting in
inaccurate assessments of the situation, since numerous lo-
cal pollution hotspots remain unmonitored. We have shown
that data fusion methods can provide a more comprehensive
analysis by minimizing the sampling bias. For instance, in
2019, only the Gràcia and Eixample stations exceeded the
annual legal NO2 limit of 40 µgm−3, and just four hourly
exceedances were recorded during this period in Barcelona.
In contrast, our results point out that large, built-up areas
and the main transit streets in the city recurrently exceeded
the legal limits during the same period. Particularly, 13 % of
Barcelona has a probability of 0.7 or higher of exceeding
the NO2 annual limit value of 40 µgm−3, which increases
to 30 % with a probability of 0.5 or higher. For the Eixample
district, which is the most populous and densely populated,
those percentages are 69 % and 95 %, respectively.

A strong point of the presented methodology is the char-
acterization of the NO2 spatial patterns by combining two
sources of information, namely the urban dispersion model
and the microscale LUR model. Therefore, the transferabil-
ity of this method to other cities depends upon the existence
of relevant passive dosimeter observations (or other obser-
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vations providing constraints on the spatial variability at ur-
ban/street level) and the availability of a high-resolution ur-
ban air quality model. Regarding the urban dispersion model,
key aspects are the availability of a detailed road network to
derive meaningful emissions and utilizing a skilled regional
model to prescribe the boundary conditions accurately. On
the other hand, Appendix A presents an assessment of the
necessary number of samplers to retrieve a valid microscale
LUR model. On top of that, a network of monitoring stations
plays a crucial role in the regression step of universal kriging,
as a linear model is derived every hour. In this study, we ob-
served that at least four monitoring stations have to be avail-
able to build robust linear regressions. However, this might
vary, depending on the specificities of the analysis, such as
the urban model skills and the size of the city.

Appendix A: Impact of selected passive dosimeter
campaigns on the data fusion results

An assessment of the passive dosimeters data needed for the
present data fusion methods is provided here. Despite the
specificities of the data, this assessment is intended to aid
in the transferability to other cities. First, Sect. A1 provides a
statistical assessment of the data fusion techniques as a func-
tion of the experimental campaign used. Second, Sect. A2 in-
cludes a brief discussion of the number of samplers required.

A1 Impact of combining different experimental
campaigns

We have calculated the effect of using campaigns from dif-
ferent years at two distinct levels, namely effects on the mi-
croscale LUR performance and effects on the overall data
fusion workflow performance (UK-DM-LUR).

A1.1 Impact on the microscale LUR performance

Applying the performance evaluation procedure described in
Sect. 3.1.1, Table A1 compares statistical results for the mi-
croscale LUR model when relying solely on data from the
CSIC or the xAire campaigns. As a reference, we have also
added the results of the raw CALIOPE-Urban model and the
microscale LUR performance when using both campaigns
(already shown in Table 2).

The microscale LUR model, based solely on the CSIC
campaign, exhibits superior performance compared to the
model based on both campaigns, whereas the model based
solely on the xAire campaign demonstrates the opposite
trend. However, there are notable differences in the number
of data points and the motivation behind each campaign. The
CSIC campaign deployed fewer samplers (175), which raises
concerns about possible overfitting. In this line, the COE
statistic shows a significant decline (∼ 40 %) between the
training set and the test set without residuals, although the de-
crease in performance for the other statistics is not as promi-

nent. Additionally, we expect a higher data quality from the
CSIC campaign, since it was conducted by a specialized re-
search agency. In contrast, the xAire campaign was a citizen
science initiative, involving school children and their fami-
lies. All of this could have affected issues such as cluster-
ing (see Fig. 3), although the number of dosimeters included
here in this campaign is considerably larger (669). Combin-
ing both campaigns allows us to consider more samples, to
characterize the complex NO2 gradients in the city, while re-
ducing potential errors associated with overfitting and clus-
tering.

A1.2 Impact on the full data fusion workflow
performance

Figure A1 shows the statistical results (COE, MB, r , and
RMSE) obtained through an hourly LOOCV approach across
the 12 monitoring stations. The statistical analysis com-
pares the universal kriging technique that employs only the
CALIOPE-Urban output as a covariate (UK-DM), the uni-
versal kriging technique adding the microscale LUR model
resulting from combining both dosimeter campaigns (UK-
DM-LUR), and the UK-DM-LUR models based only on one
campaign (UK-DM-LUR CSIC and UK-DM-LUR xAire).
For reference, the raw CALIOPE-Urban statistical results are
also presented.

Regardless of the configuration, UK-DM-LUR improves
the UK-DM methodology (and, therefore, CALIOPE-Urban)
for the COE, r , and RMSE indicators. For the MB indica-
tor, there is no clear trend once again. Once the microscale
LUR model was integrated into the universal kriging frame-
work, the statistical differences among UK-DM-LUR con-
figurations were less significant than the ones shown in Ta-
ble A1. It should be noted that the LOOCV is carried out in
a limited number of monitoring stations (12), which repre-
sents a significant constraint on the current statistical evalu-
ation. Despite this limitation in the evaluation, we consider
that the broader spatial coverage of the samplers when com-
bining both campaigns is the best option because it allows us
to capture a greater number of complex NO2 structures not
reproduced by CALIOPE-Urban.

A2 Impact of the number of samplers considered on
the microscale LUR performance

In the case of using two campaigns, we have computed the
microscale LUR performance by gradually increasing the
number of samplers from 140 to 790 with uniform incre-
ments of 50 random samplers, which results in 14 new mod-
els. In addition, we have also added the final model with
all samplers (844) to make a comparison. To ensure the ro-
bustness of the results, we repeated these computations three
times, randomly varying the selected samplers. Then, from
these three series, the average and the standard deviation
of the statistical indicators are computed. Figure A2 com-
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Table A1. Statistical results of the microscale LUR model in nested CV, considering both campaigns or only one of them. The 2017 annual
mean concentration of NO2 of the raw dispersion model (CALIOPE-Urban) is also shown.

Campaign Model n COE MB r RMSE
(µgm−3) (µgm−3)

CSIC
Microscale LUR

Training–validation set 1580 0.51 0.24 0.85 8.70
Test set without adding the residuals 170 0.32 0.31 0.75 10.74
Test set adding the residuals 170 0.35 −0.27 0.75 10.68

Raw CALIOPE-Urban Annual mean 170 0.20 0.71 0.67 12.66

xAire
Microscale LUR

Training–validation set 6030 0.29 −0.13 0.67 11.49
Test set without adding the residuals 660 0.23 −0.18 0.59 12.40
Test set adding the residuals 660 0.26 −0.25 0.64 11.87

Raw CALIOPE-Urban Annual mean 660 0.09 −1.23 0.51 13.81

CSIC and xAire
Microscale LUR

Training–validation set 7600 0.30 0.15 0.69 11.38
Test set without adding the residuals 840 0.24 0.22 0.62 12.17
Test set adding the residuals 840 0.27 −0.27 0.64 11.87

Raw CALIOPE-Urban Annual mean 840 0.13 −0.81 0.54 13.68

Figure A1. Statistical results for each station after applying UK-DM and UK-DM-LUR to 2019 hourly data in LOOCV. For the UK-DM-
LUR application, we have considered developing the microscale LUR model with only one experimental campaign (UK-DM-LUR CSIC or
UK-DM-LUR xAire) or both of them (UK-DM-LUR). In addition, we show the statistical results for the CALIOPE-Urban estimates at each
station. All stations refer to the average over all stations.

pares the COE, MB, r , and RMSE when gradually increas-
ing the number of samplers for the training dataset, the test
dataset, the test dataset interpolating the residuals, and the
raw CALIOPE-Urban output.

As expected, as more samplers are considered, the stan-
dard deviation of the different metrics decreases. Also, an
increasing trend in COE and r for the test sets is observed,
while the same statistics decrease for the training sets. This
opposite trend indicates that the overfitting is being reduced
as more samplers are considered. For the test sets, the RMSE
fluctuates around 12 µgm−3 beyond 290 samplers with a
moderated variability. Despite some fluctuations in the re-
sults, we can conclude that, from the 290th sampler onwards,
the COE differences between training and test sets, as well as
the resulting RMSE, remain more or less constant. Therefore,

based on these results, we would recommend a minimum of
290 samplers to build the microscale LUR.
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Figure A2. Statistical results of the 15 microscale LUR models in
nested CVs. The models are built by considering both dosimeter
campaigns and gradually increasing the number of samplers from
140 to 790 by uniform increments of 50 random samplers, in addi-
tion to the final model with all of the samplers (844). The statistics
represent the evaluation of the microscale LUR models for the train-
ing and test (with and without the correction of the residuals) sets.
The 2017 annual mean concentration of NO2 of the raw dispersion
model (CALIOPE-Urban) is also shown and evaluated at the loca-
tions of the dosimeters.

Code and data availability. The source code and the results, in-
cluding the final kriging post-processed product (predicted concen-
trations, uncertainties, and exceedances) are publicly available via
Zenodo at https://doi.org/10.5281/zenodo.7185913 (Criado et al.,
2022). The xAire dosimeters campaign is publicly available in
Perelló et al. (2021b). The input traffic data, coming from the
bottom-up emission model HERMESv3 (Guevara et al., 2019) and
the IDAEA-CSIC dosimeter campaign data (Benavides et al., 2019),
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them.
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