12,479 research outputs found

    A uniform controllability result for the Keller-Segel system

    Get PDF
    In this paper we study the controllability of the Keller-Segel system approximating its parabolic-elliptic version. We show that this parabolic system is locally uniform controllable around a constant solution of the parabolic-elliptic system when the control is acting on the component of the chemical

    SU(2)SU(2)-particle sigma model: Momentum-space quantization of a particle on the sphere S3S^3

    Get PDF
    We perform the momentum-space quantization of a spin-less particle moving on the SU(2)SU(2) group manifold, that is, the three-dimensional sphere S3S^{3}, by using a non-canonical method entirely based on symmetry grounds. To achieve this task, non-standard (contact) symmetries are required as already shown in a previous article where the configuration-space quantization was given. The Hilbert space in the momentum space representation turns out to be made of a subset of (oscillatory) solutions of the Helmholtz equation in four dimensions. The most relevant result is the fact that both the scalar product and the generalized Fourier transform between configuration and momentum spaces deviate notably from the naively expected expressions, the former exhibiting now a non-trivial kernel, under a double integral, traced back to the non-trivial topology of the phase space, even though the momentum space as such is flat. In addition, momentum space itself appears directly as the carrier space of an irreducible representation of the symmetry group, and the Fourier transform as the unitary equivalence between two unitary irreducible representations.Comment: 29 pages, 3 figure

    The quantum Arnold transformation

    Full text link
    By a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations, including systems with friction linear in velocity, can be related to the quantum free-particle dynamical system. This transformation provides a basic (Heisenberg-Weyl) algebra of quantum operators, along with well-defined Hermitian operators which can be chosen as evolution-like observables and complete the entire Schr\"odinger algebra. It also proves to be very helpful in performing certain computations quickly, to obtain, for example, wave functions and closed analytic expressions for time-evolution operators.Comment: 19 pages, minor changes, references update
    corecore