4,212 research outputs found

    The GTC exoplanet transit spectroscopy survey. VI. A spectrally-resolved Rayleigh scattering slope in GJ 3470b

    Full text link
    Aims. As a sub-Uranus-mass low-density planet, GJ 3470b has been found to show a flat featureless transmission spectrum in the infrared and a tentative Rayleigh scattering slope in the optical. We conducted an optical transmission spectroscopy project to assess the impacts of stellar activity and to determine whether or not GJ 3470b hosts a hydrogen-rich gas envelop. Methods. We observed three transits with the low-resolution OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias, and one transit with the high-resolution UVES spectrograph at the 8.2 m Very Large Telescope. Results. From the high-resolution data, we find that the difference of the Ca II H+K lines in- and out-of-transit is only 0.67 +/- 0.22%, and determine a magnetic filling factor of about 10-15%. From the low-resolution data, we present the first optical transmission spectrum in the 435-755 nm band, which shows a slope consistent with Rayleigh scattering. Conclusions. After exploring the potential impacts of stellar activity in our observations, we confirm that Rayleigh scattering in an extended hydrogen/helium atmosphere is currently the best explanation. Further high-precision observations that simultaneously cover optical and infrared bands are required to answer whether or not clouds and hazes exist at high-altitude.Comment: 12 pages, 11 figures, accepted for publication in A&

    A multiwavelength radial velocity search for planets around the brown dwarf LP 944-20

    Get PDF
    The nearby brown dwarf LP 944-20 has been monitored for radial velocity variability at optical and near-infrared wavelengths using the VLT/UVES and the Keck/NIRSPEC spectrographs, respectively. The UVES radial velocity data obtained over 14 nights spanning a baseline of 841 days shows significant variability with an amplitude of 3.5 km s−1^{-1}. The periodogram analysis of the UVES data indicates a possible period between 2.5 hours and 3.7 hours, which is likely due to the rotation of the brown dwarf. However, the NIRSPEC data obtained over 6 nights shows an rms dispersion of only 0.36 km s−1^{-1} and do not follow the periodic trend. These results indicate that the variability seen with UVES is likely to be due to rotationally modulated inhomogeneous surface features. We suggest that future planet searches around very low-mass stars and brown dwarfs using radial velocities will be better conducted in the near-infrared than in the optical.Comment: accepted by ApJ Letter

    An Upper Limit on the Albedo of HD 209458b: Direct Imaging Photometry with the MOST Satellite

    Full text link
    We present space-based photometry of the transiting exoplanetary system HD 209458 obtained with the MOST (Microvariablity and Oscillations of STars) satellite, spanning 14 days and covering 4 transits and 4 secondary eclipses. The HD 209458 photometry was obtained in MOST's lower-precision Direct Imaging mode, which is used for targets in the brightness range 6.5<V<136.5 < V < 13. We describe the photometric reduction techniques for this mode of observing, in particular the corrections for stray Earthshine. We do not detect the secondary eclipse in the MOST data, to a limit in depth of 0.053 mmag (1 \sigma). We set a 1 \sigma upper limit on the planet-star flux ratio of 4.88 x 10^-5 corresponding to a geometric albedo upper limit in the MOST bandpass (400 to 700 nm) of 0.25. The corresponding numbers at the 3 \sigma level are 1.34 x 10^-4 and 0.68 respectively. HD 209458b is half as bright as Jupiter in the MOST bandpass. This low geometric albedo value is an important constraint for theoretical models of the HD209458b atmosphere, in particular ruling out the presence of reflective clouds. A second MOST campaign on HD 209458 is expected to be sensitive to an exoplanet albedo as low as 0.13 (1 sigma), if the star does not become more intrinsically variable in the meantime.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journal (July 2006, v645n1

    Increased large conductance calcium-activated potassium (BK) channel expression accompanied by STREX variant downregulation in the developing mouse CNS

    Get PDF
    BACKGROUND: Large conductance calcium- and voltage activated potassium (BK) channels are important determinants of neuronal excitability through effects on action potential duration, frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1, which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless (ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape their electrical properties during development. However, whether differential splicing of BK channel variants occurs during development of the mammalian CNS has not been examined. RESULTS: Using quantitative real-time polymerase chain reaction (RT-PCR) Taqmanℱ assays, we demonstrate that total BK channel transcripts are up regulated throughout the murine CNS during embryonic and postnatal development with regional variation in transcript levels. This upregulation is associated with a decrease in STREX variant mRNA expression and an upregulation in ZERO variant expression. CONCLUSION: As BK channel splice variants encode channels with distinct functional properties the switch in splicing from the STREX phenotype to ZERO phenotype during embryonic and postnatal CNS development may provide a mechanism to allow BK channels to control distinct functions at different times of mammalian brain development

    MOST photometry of the enigmatic PMS pulsator HD 142666

    Full text link
    We present precise photometry of the pulsating Herbig Ae star HD 142666 obtained in two consecutive years with the MOST (Microvariability & Oscilations of STars) satellite. Previously, only a single pulsation period was known for HD 142666. The MOST photometry reveals that HD 142666 is multi-periodic. However, the unique identification of pulsation frequencies is complicated by the presence of irregular variability caused by the star's circumstellar dust disk. The two light curves obtained with MOST in 2006 and 2007 provided data of unprecedented quality to study the pulsations in HD 142666 and also to monitor the circumstellar variability. We attribute 12 frequencies to pulsation. Model fits to the three frequencies with the highest amplitudes lie well outside the uncertainty box for the star's position in the HR diagram based on published values. The models suggest that either (1) the published estimate of the luminosity of HD 142666, based on a relation between circumstellar disk radius and stellar luminosity, is too high and/or (2) additional physics such as mass accretion may be needed in our models to accurately fit both the observed frequencies and HD 142666's position in the HR diagram.Comment: 10 pages, 11 figures, accepted for publication by Astronomy and Astrophysic

    MOST photometry of the roAp star 10 Aql

    Get PDF
    Context: We present 31.2 days of nearly continuous MOST photometry of the roAp star 10Aql. Aims:The goal was to provide an unambiguous frequency identification for this little studied star, as well as to discuss the detected frequencies in the context of magnetic models and analyze the influence of the magnetic field on the pulsation. Methods: Using traditional Fourier analysis techniques on three independent data reductions, intrinsic frequencies for the star are identified. Theoretical non-adiabatic axisymmetric modes influenced by a magnetic field having polar field strengths Bp = 0-5kG were computed to compare the observations to theory. Results: The high-precision data allow us to identify three definite intrinsic pulsation frequencies and two other candidate frequencies with low S/N. Considering the observed spacings, only one (50.95microHz) is consistent with the main sequence nature of roAp stars. The comparison with theoretical models yields a best fit for a 1.95Msun model having solar metallicity, suppressed envelope convection, and homogenous helium abundance. Furthermore, our analysis confirms the suspected slow rotation of the star and sets new lower limits to the rotation period (Prot>1 month) and inclination (i>30\pm10deg.). Conclusions:The observed frequency spectrum is not rich enough to unambiguously identify a model. On the other hand, the models hardly represent roAp stars in detail due to the approximations needed to describe the interactions of the magnetic field with stellar structure and pulsation. Consequently, errors in the model frequencies needed for the fitting procedure can only be estimated. Nevertheless, it is encouraging that models which suppress convection and include solar metallicity, in agreement with current concepts of roAp stars, fit the observations best.Comment: accepted by A&

    Detection of Solar-like Oscillations in the G7 Giant Star xi Hya

    Get PDF
    We report the firm discovery of solar-like oscillations in a giant star. We monitored the star xi Hya (G7III) continuously during one month with the CORALIE spectrograph attached to the 1.2m Swiss Euler telescope. The 433 high-precision radial-velocity measurements clearly reveal multiple oscillation frequencies in the range 50 - 130 uHz, corresponding to periods between 2.0 and 5.5 hours. The amplitudes of the strongest modes are slightly smaller than 2 m/s. Current model calculations are compatible with the detected modes.Comment: 4 pages, 4 figures, accepted for publication as a letter in A&

    Inclusion of turbulence in solar modeling

    Get PDF
    The general consensus is that in order to reproduce the observed solar p-mode oscillation frequencies, turbulence should be included in solar models. However, until now there has not been any well-tested efficient method to incorporate turbulence into solar modeling. We present here two methods to include turbulence in solar modeling within the framework of the mixing length theory, using the turbulent velocity obtained from numerical simulations of the highly superadiabatic layer of the sun at three stages of its evolution. The first approach is to include the turbulent pressure alone, and the second is to include both the turbulent pressure and the turbulent kinetic energy. The latter is achieved by introducing two variables: the turbulent kinetic energy per unit mass, and the effective ratio of specific heats due to the turbulent perturbation. These are treated as additions to the standard thermodynamic coordinates (e.g. pressure and temperature). We investigate the effects of both treatments of turbulence on the structure variables, the adiabatic sound speed, the structure of the highly superadiabatic layer, and the p-mode frequencies. We find that the second method reproduces the SAL structure obtained in 3D simulations, and produces a p-mode frequency correction an order of magnitude better than the first method.Comment: 10 pages, 12 figure
    • 

    corecore