12 research outputs found

    A Genotyping Study in Benin Comparing the Carriage of Plasmodium falciparum Infections Before Pregnancy and in Early Pregnancy: Story of a Persistent Infection

    Get PDF
    BACKGROUND: Malaria infections in the first trimester of pregnancy are frequent and deleterious for both mother and child health. To investigate if these early infections are newly acquired or already present in the host, we assessed whether parasites detected before pregnancy and those detected in early pregnancy are the same infection. METHODS: We used data from the preconceptional "RECIPAL" study (Benin, 2014-2017). Sixty-three pregnant women of 411 included who had a malaria infection detected by quantitative polymerase chain reaction both before pregnancy and at the first antenatal care (ANC) visit were selected for this study. Two highly polymorphic markers, msp-2 and glurp, and a fragment-analysis method were used to enumerate the Plasmodium falciparum genotypes and to quantify their proportions within isolates. An infection was considered as persistent when identical msp-2 and glurp genotypes were found in the corresponding prepregnancy and early-pregnancy samples. RESULTS: The median time between the 2 malaria screenings was 3 months. The median gestational age at the first ANC visit was 6.4 weeks. Most infections before pregnancy were submicroscopic infections. Based on both msp-2 and glurp genotyping, the infection was similar before and in early pregnancy in 46% (29/63) of cases. CONCLUSIONS: Almost half of P. falciparum infections detected in the first trimester originate before pregnancy. Protecting young women from malaria infection before pregnancy might reduce the prevalence of malaria in early pregnancy and its related poor maternal and birth outcomes.Impact du paludisme précoce au cours de la grossesse sur la croissance fœtale au Béni

    Cytoadherence characteristics to endothelial receptors ICAM-1 and CD36 of Plasmodium falciparum populations from severe and uncomplicated malaria cases

    No full text
    The adhesion of infected red blood cells (IRBCs) to the cell lining of microvasculature is thought to play a central role in the pathogenesis of severe malaria. Individual IRBC can bind to more than one host receptor and parasites with multiple binding phenotypes may cause severe disease more frequently. However, as most clinical isolates are multiclonal, previous studies were hampered by the difficulty to distinguish whether a multiadherent phenotype was due to one or more parasite population(s), We have developed a tool, based on cytoadhesion assay and GeneScan genotyping technology, which enabled us to assess on fresh isolates the capacity of adherence of individual P. falciparum genotypes to human receptors expressed on CHO transfected cells. The cytoadhesion to ICAM-1 and CD36 of IRBCs from uncomplicated and severe malaria attacks was evaluated using this methodology, In this preliminary series conducted in non immune travelers, IRBCs from severe malaria appeared to adhere more frequently and/or strongly to ICAM-1 and CD36 in comparison with uncomplicated cases. In addition, a majority genotype able to strongly adhere to CD36 was found more frequently in isolates from severe malaria cases. Further investigations ore needed to confirm the clinical relevance of these dat

    Dynamics of Plasmodium falciparum gametocyte carriage in pregnant women under intermittent preventive treatment with sulfadoxine-pyrimethamine in Benin

    No full text
    Background: In sub-Saharan Africa, malaria is a major cause of morbidity and mortality, in particular in children and pregnant women. During pregnancy, Plasmodium falciparum infected red blood cells expressing VAR2CSA are selected from circulation by selective cytoadherence to chondroitin sulfate proteoglycan receptors expressed in the placenta, leading to an increased susceptibility to malaria, long-lasting infections and poor pregnancy outcome. Partly because of these long-lasting infections, women were reported to have a higher density of gametocytes in their peripheral blood, and are considered as a potential reservoir for malaria transmission. To improve pregnancy outcome in areas of high malaria transmission, The WHO recommends intermittent preventive treatment with sulfadoxine/pyrimethamine (IPTp-SP) during antenatal care visits. The effect of IPTp-SP on gametocyte carriage in infected pregnant women was studied. Methods: The levels of transcription of three gametocytes stage-specific genes Pfs16 (expressed by sexually-committed ring stage parasites and fully matured gametocytes), Pfs25 (expressed by female mature gametocytes) and Pfs230 (expressed by male mature gametocytes) were assessed by real-time PCR in 50 P. falciparum infected women at early pregnancy (before implementation of IPTp-SP), and in 50 infected women at delivery. Sex ratios of male and female gametocytes were determined in these women to assess the effect of IPTp-SP on the gametocyte populations. Results: The data show that the three transcript types specific to Pfs16, Pfs25 and Pfs230 were detected in all samples, both at inclusion and delivery. Levels of Pfs25 and Pfs230 transcripts were higher at delivery than at inclusion (p = 0.042 and p = 0.003), while the opposite was observed for Pfs16 (p = 0.048). The ratio of male/female gametocyte transcript levels was higher at delivery than at inclusion (p = 0.018). Since a mixed gender late stage gametocyte culture was used as a positive control, male and female gametocytes could not be quantified in an absolute way in the samples. However, the amplification reliability of the Pfs25 and Pfs230 markers in the samples could be checked. A relative quantity of each type of Pfs transcript was, therefore, used to calculate the sex ratio proxy. Conclusion: This study demonstrates that IPTp-SP treatment contributes to modify the parasite populations' structure during pregnancy. In line with previous studies, we suggest that the continued use of SP in pregnant women as IPTp, despite having a beneficial effect on the pregnancy outcome, could be a risk factor for increased transmission. This reinforces the need for an alternative to the SP drug for malaria prevention during pregnancy

    Plasmodium falciparum genotype population dynamics in asymptomatic children from Senegal

    No full text
    In areas where malaria is endemic, infected individuals generally harbor a mixture of genetically distinct Plasmodium falciparum parasite populations. For the first time, we studied temporal variations of blood parasite densities and circulating genotypes in asymptomatic Senegalese children, at time intervals as short as 4-12 h. Twenty-one Senegalese children, presenting with an asymptomatic P. falciparum infection, were sampled eight times within three days. Parasite density was assessed by thick blood smears, and all infecting genotypes were quantified by the fragment-analysis method. Parasite densities showed dramatic fluctuations up to a 1 to 1000 ratio, with at least one peak of parasite density. Polyclonal infections were detected in all children, with a multiplicity of infection of 5.2-6.8 genotypes per child. A single sample never reflected the full complexity of the parasite populations hosted by a given individual. Genotypes with different behaviors were detected in all children, some genotypes undergoing major fluctuations, while others were highly stable during the follow-up. A single peripheral blood sampling does not reflect the total parasite load. Repeated sampling is needed to have a more detailed scheme of parasite population dynamics and a better knowledge of the true complexity of an infection. (c) 2006 Elsevier SAS. All rights reserved

    Dynamics of Plasmodium falciparum gametocyte carriage in pregnant women under intermittent preventive treatment with sulfadoxine–pyrimethamine in Benin

    No full text
    Abstract Background In sub-Saharan Africa, malaria is a major cause of morbidity and mortality, in particular in children and pregnant women. During pregnancy, Plasmodium falciparum infected red blood cells expressing VAR2CSA are selected from circulation by selective cytoadherence to chondroitin sulfate proteoglycan receptors expressed in the placenta, leading to an increased susceptibility to malaria, long-lasting infections and poor pregnancy outcome. Partly because of these long-lasting infections, women were reported to have a higher density of gametocytes in their peripheral blood, and are considered as a potential reservoir for malaria transmission. To improve pregnancy outcome in areas of high malaria transmission, The WHO recommends intermittent preventive treatment with sulfadoxine/pyrimethamine (IPTp-SP) during antenatal care visits. The effect of IPTp-SP on gametocyte carriage in infected pregnant women was studied. Methods The levels of transcription of three gametocytes stage-specific genes Pfs16 (expressed by sexually-committed ring stage parasites and fully matured gametocytes), Pfs25 (expressed by female mature gametocytes) and Pfs230 (expressed by male mature gametocytes) were assessed by real-time PCR in 50 P. falciparum infected women at early pregnancy (before implementation of IPTp-SP), and in 50 infected women at delivery. Sex ratios of male and female gametocytes were determined in these women to assess the effect of IPTp-SP on the gametocyte populations. Results The data show that the three transcript types specific to Pfs16, Pfs25 and Pfs230 were detected in all samples, both at inclusion and delivery. Levels of Pfs25 and Pfs230 transcripts were higher at delivery than at inclusion (p = 0.042 and p = 0.003), while the opposite was observed for Pfs16 (p = 0.048). The ratio of male/female gametocyte transcript levels was higher at delivery than at inclusion (p = 0.018). Since a mixed gender late stage gametocyte culture was used as a positive control, male and female gametocytes could not be quantified in an absolute way in the samples. However, the amplification reliability of the Pfs25 and Pfs230 markers in the samples could be checked. A relative quantity of each type of Pfs transcript was, therefore, used to calculate the sex ratio proxy. Conclusion This study demonstrates that IPTp-SP treatment contributes to modify the parasite populations’ structure during pregnancy. In line with previous studies, we suggest that the continued use of SP in pregnant women as IPTp, despite having a beneficial effect on the pregnancy outcome, could be a risk factor for increased transmission. This reinforces the need for an alternative to the SP drug for malaria prevention during pregnancy

    PfEMP1 A-Type ICAM-1-Binding Domains Are Not Associated with Cerebral Malaria in Beninese Children

    No full text
    International audiencePfEMP1 is the major antigen involved in Plasmodium falciparum-infected erythrocyte sequestration in cerebrovascular endothelium. While some PfEMP1 domains have been associated with clinical phenotypes of malaria, formal associations between the expression of a specific domain and the adhesion properties of clinical isolates are limited. In this context, 73 cerebral malaria (CM) and 98 uncomplicated malaria (UM) Beninese children were recruited. We attempted to correlate the cytoadherence phenotype of Plasmodium falciparum isolates with the clinical presentation and the expression of specific PfEMP1 domains. Cytoadherence level on Hbec-5i and CHO-ICAM-1 cell lines and var genes expression were measured. We also investigated the prevalence of the ICAM-1-binding amino acid motif and dual receptor-binding domains, described as a potential determinant of cerebral malaria pathophysiology. We finally evaluated IgG levels against PfEMP1 recombinant domains (CIDRα1.4, DBLβ3, and CIDRα1.4-DBLβ3). CM isolates displayed higher cytoadherence levels on both cell lines, and we found a correlation between CIDRα1.4-DBLβ1/3 domain expression and CHO-ICAM-1 cytoadherence level. Endothelial protein C receptor (EPCR)-binding domains were overexpressed in CM isolates compared to UM whereas no difference was found in ICAM-1-binding DBLβ1/3 domain expression. Surprisingly, both CM and UM isolates expressed ICAM-1-binding motif and dual receptor-binding domains. There was no difference in IgG response against DBLβ3 between CM and UM isolates expressing ICAM-1-binding DBLβ1/3 domain. It raises questions about the role of this motif in CM pathophysiology, and further studies are needed, especially on the role of DBLβ1/3 without the ICAM-1-binding motif.IMPORTANCE Cerebral malaria pathophysiology remains unknown despite extensive research. PfEMP1 proteins have been identified as the main Plasmodium antigen involved in cerebrovascular endothelium sequestration, but it is unclear which var gene domain is involved in Plasmodium cytoadhesion. EPCR binding is a major determinant of cerebral malaria whereas the ICAM-1-binding role is still questioned. Our study confirmed the EPCR-binding role in CM pathophysiology with a major overexpression of EPCR-binding domains in CM isolates. In contrast, ICAM-1-binding involvement appears less obvious with A-type ICAM-1-binding and dual receptor-binding domain expression in both CM and UM isolates. We did not find any variations in ICAM-1-binding motif sequences in CM compared to UM isolates. UM and CM patients infected with isolates expressing the ICAM-1-binding motif displayed similar IgG levels against DBLβ3 recombinant protein. Our study raises interrogations about the role of these domains in CM physiopathology and questions their use in vaccine strategies against cerebral malaria. Copyrigh

    Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations : impact on vaccine design for placental malaria

    No full text
    In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection

    From genomic to LC-MS/MS evidence: Analysis of PfEMP1 in Benin malaria cases

    No full text
    International audienceBackground PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging. The aim of our study is to identify the different PfEMP1 proteins variants expressed within patient samples, and therefore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated malaria or severe malaria in malaria endemic setting in Cotonou, Benin. Methods We performed a multi-omic approach to decipher PfEMP1 expression at the patient's level in different clinical settings. Using a combination of whole genome sequencing approach and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new custom protein database. This database was used for protein identification in mass spectrometry analysis. Results The differential expression analysis of RNAsequencing data shows an increased expression of the var domains transcripts DBL alpha 1.7, DBL alpha 1.1, DBL alpha 2 and DBL beta 12 in samples from patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associated to PfEMP1 proteins in mass spectrometry. Conclusion We highlighted the diversity of the PfEMP1 sequences from field sample compared to reference sequences repositories and confirmed the validity of our approach. These findings should contribute to further vaccine development strategies based on PfEMP1 proteins

    Identification of Plasmodium falciparum and host factors associated with cerebral malaria: description of the protocol for a prospective, case-control study in Benin (NeuroCM)

    No full text
    International audienceIn 2016, an estimated 216 million cases and 445 000 deaths of malaria occurred worldwide, in 91 countries. In Benin, malaria causes 26.8% of consultation and hospitalisation motif in the general population and 20.9% in children under 5 years old.The goal of the NeuroCM project is to identify the causative factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the aetiologies and management of non-malarial non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria.Ethics approval for the NeuroCM study has been obtained from Comité National d'Ethique pour la Recherche en santé of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been approved by Comité consultatif de déontologie et d'éthique of Institut de Recherche pour le Développement (IRD; 10/24/2017). The study results will be disseminated through the direct consultations with the WHO's Multilateral Initiative on Malaria (TDR-MIM) and Roll Back Malaria programme, through scientific meetings and peer-reviewed publications in scientific or medical journals, and through guidelines and booklets

    Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria

    No full text
    International audienceAbstract Background Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. Methods Children presenting with CM ( n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients’ cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson’s Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. Results Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1β), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann–Whitney U -test, P -values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P -value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C–C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. Conclusions The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications. Graphical Abstrac
    corecore