13 research outputs found

    Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer

    Get PDF
    The role of oxidative stress in prostate cancer has been increasingly recognised. Acute and chronic inflammations generate reactive oxygen species that result in damage to cellular structures. Haeme oxygenase-1 (HO-1) has cytoprotective effects against oxidative damage. We hypothesise that modulation of HO-1 expression may be involved in the process of prostate carcinogenesis and prostate cancer progression. We thus studied HO-1 expression and localisation in 85 samples of organ-confined primary prostate cancer obtained via radical prostatectomy (Gleason grades 4–9) and in 39 specimens of benign prostatic hyperplasia (BPH). We assessed HO-1 expression by immunohistochemical staining. No significant difference was observed in the cytoplasmic positive reactivity among tumours (84%), non-neoplastic surrounding parenchyma (89%), or BPH samples (87%) (P=0.53). Haeme oxygenase-1 immunostaining was detected in the nuclei of prostate cancer cells in 55 of 85 (65%) patients but less often in non-neoplastic surrounding parenchyma (30 of 85, 35%) or in BPH (9 of 39, 23%) (P<0.0001). Immunocytochemical and western blot analysis showed HO-1 only in the cytoplasmic compartment of PC3 and LNCaP prostate cancer cell lines. Treatment with hemin, a well-known specific inducer of HO-1, led to clear nuclear localisation of HO-1 in both cell lines and highly induced HO-1 expression in both cellular compartments. These findings have demonstrated, for the first time, that HO-1 expression and nuclear localisation can define a new subgroup of prostate cancer primary tumours and that the modulation of HO-1 expression and its nuclear translocation could represent new avenues for therapy

    Reduction of a conserved Cys is essential for Myb DNA-binding.

    No full text
    The human c-Myb gene product is a regulator of transcription with intrinsic DNA-binding activity located in two of three aminoterminal repeats R2R3. Three purified recombinant c-Myb proteins, a 42 kD protein corresponding to the amino-terminal half (HM42), and two proteins representing R2R3 or R1R2R3 (HMR23 and HMR123) have been analyzed either as purified proteins or present in bacterial extracts in gelshift analyses using a high-affinity DNA oligonucleotide. The purified proteins are inactive in DNA-binding unless supplemented with a reducing agent such as dithiothreitol (DTT) in vitro. Alternatively a cellular nuclear extract (Nex) from HeLa cells strongly activates the binding. This effect is dose-dependent and sensitive to heat. The Nex does not lead to changes in the Myb-DNA mobility shift assay excluding a direct association of the complex with a cellular component. Site-directed mutagenesis of the aminoacid residue 130, a single conserved cysteine in HMR23 to serine almost completely abolishes DNA binding. Oxidation by diamide or alkylation by N-ethylmaleimide (NEM) of the Myb-proteins in vitro inhibit their interaction with DNA whereby the diamide effect is reversible by addition of excess of DTT. Nex prepared from COS cells transfected with c-myb leads to Myb-DNA interaction which is not responsive to DTT but sensitive to NEM and diamide. Our data indicate that the reduced cysteine of Myb is essential for its DNA-binding and that Myb function may be regulated by a reduction-oxidation mechanism

    The carboxyterminus of human c-myb protein stimulates activated transcription in trans.

    No full text
    The cellular c-myb gene encodes a transcription factor composed of a DNA-binding domain, a transactivating domain and a regulatory domain located at its carboxy (C-) terminus. The latter one is deleted in the transforming viral protein v-Myb. Here we show that deletion of the C-terminus of c-Myb increases the transcriptional transactivation activity of c-Myb defining it as cis-acting negative regulatory domain. Cotransfection of the C-terminus in an in vivo competition assay causes stimulation of the transcriptional activity of various v- and c-Myb expression constructs in trans. The effect is dose-dependent and independent of the kind of DNA-binding domain, since c-Myb as well as GAL4-c-Myb chimaeras can be stimulated in trans. Other transcription factors, such as GAL4-VP16, GAL4, c-Jun or C/EBP beta are also stimulated by the cotransfected C-terminus. In contrast, human B-Myb is not stimulated by the c-Myb C-terminus in trans. The data suggest that the C-terminus of c-Myb may interact with a cellular inhibitor which is part of the protein complex mediating activated transcription and may stimulate in trans by sequestering away such an inhibitor. Binding of c-Myb to a putative inhibitor would explain differences between c-Myb in comparison to B- and v-Myb in transcriptional regulation

    Interaction of the v-and c-Myb proteins with regulatory sequences of the human c-myc gene.

    No full text
    Eight c-Myb-binding sites have been identified in the regulatory region of the human c-myc gene using gel retardation and DNAase I footprint assays with purified bacterially expressed full-length and carboxy-terminally truncated c-Myb proteins. These binding sites exhibit different affinities whereby strong binding correlates better with conservation of the palindromic sequences, AACXGTT or AACGTT, than the previously described consensus sequence. Flanking AT-rich sequences further increase the binding affinity. The c-Myb-binding sites are arranged in pairs consisting of one high- and one low-affinity binding site. Binding of the Myb proteins to these sites is non-cooperative. The v-Myb protein protects two nucleotides fewer than the c-Myb protein. Co-transfection of reporter CAT genes, containing upstream human c-myc sequences including exon 1, with c-Myb-expressing constructs resulted in positive transactivation, which was eightfold with full-length Myb and 14-fold with the truncated Myb. This result suggests that the Myb protein could participate in regulation of human c-myc gene expression
    corecore