320 research outputs found

    Development of ligament tissue biodegradable devices: A review

    Get PDF
    This bibliographic review is focused on ligament tissue rehabilitation, its anatomy-physiology, and, mainly, on the dimensioning considerations of a composite material solution. The suture strength is problematic during the tissue recovering, implying reduction of mobility for several months. However, early postoperative active mobilization may enable a faster and more effective recovering of tissue biomechanical functions. As the risk of tendon rupture becomes a significant concern, a repair technique must be used to withstand the tensile forces generated by active mobilization. However, to avoid stress shielding effect on ligament tissue, an augmentation device must be designed on stiffness basis, that preferably will decrease. Absorbable biocomposite reinforcements have been used to allow early postoperative active mobilization and avoid the shortcomings of current repair solutions. Tensile strength decrease of the repair, during the initial inflammatory phase, is expected, derived from oedema and tendon degradation. In the fibroblastic phase, stiffness and strength will increase, which will stabilize during the remodeling phase. The reinforcement should be able to carry the dynamic load due to locomotion with a mechanical behavior similar to the undamaged natural tissue, during all rehabilitation process. Moreover, the degradation rate Must also be compatible with the ligament tissue recovering. The selection and combination of different biodegradable materials, in order to make the biocomposite reinforcement functionally compatible to the damaged sutured tissue, in terms of mechanical properties and degradation rate, is a major step on the design process. Modelling techniques allow pre-clinical evaluation of the reinforcement functional compatibility, and the optimization by comparison of different composite solutions in terms of biomechanical behavior

    Mechanical study of PLA-PCL fibers during in vitro degradation

    Get PDF
    The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to alpha-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, especially, for temporary mechanical supports in regenerative medical devices. Ideally, the degradation should be compatible with the tissue recovering. In this work, the evolution of mechanical properties during degradation is discussed based on experimental data. The decrease of tensile strength of PLA-PCL fibers follows the same trend as the decrease of molecular weight, and so it can also be modeled using a first order equation. For each degradation stage, hyperelastic models such as Neo-Hookean, Mooney-Rivlin and second reduced order, allow a reasonable approximation of the material behavior. Based on this knowledge, constitutive models that describe the mechanical behavior during degradation are proposed and experimentally validated. The proposed theoretical models and methods may be adapted and used in other biodegradable materials, and can be considered fundamental tools in the design of regenerative medical devices where strain energy is an important requirement, such as, for example, ligaments, cartilage and stents

    Brazilian obstetrician-gynecologists and abortion: a survey of knowledge, opinions and practices

    Get PDF
    BACKGROUND: Abortion laws are extremely restrictive in Brazil. The knowledge, opinions of abortion laws, and abortion practices of obstetrician-gynecologists can have a significant impact on women's access to safe abortion. METHODS: We conducted a mail-in survey with a 10% random sample of obstetrician-gynecologists affiliated with the Brazilian Federation of Obstetricians and Gynecologists. We documented participants' experiences performing abortion under a range of legal and illegal circumstances, and asked about which abortion techniques they had experience with. We used chi-square tests and crude logistic regression models to determine which sociodemographic, knowledge-related, or practice-related variables were associated with physician opinion. RESULTS: Of the 1,500 questionnaires that we mailed out, we received responses from 572 (38%). Less than half (48%) of the respondents reported accurate knowledge about abortion law and 77% thought that the law should be more liberal. One-third of respondents reported having previous experience performing an abortion, and very few of these physicians reported having experience with manual vacuum aspiration (MVA) or with misoprostol with either mifepristone or methotrexate. Physicians that favored liberalization of the law were more likely to have correct knowledge about abortion law, and to be in favor of public funding for abortion services. CONCLUSION: Brazilian obstetrician-gynecologists need more information on abortion laws and on safe, effective abortion procedures

    Luminescence characteristics of quartz from Brazilian sediments and constraints for OSL dating

    Get PDF
    This study analyzes the optically stimulated luminescence (OSL) characteristics of quartz grains from fluvial, eolian and shallow marine sands of northeastern and southeastern Brazil, with especial focus on the applicability of the single-aliquot regenerative dose (SAR) dating protocol. All analyzed Brazilian sediments presented relatively high OSL sensitivity and good behavior regarding their luminescence characteristics relevant for radiation dose estimation. However, some samples from the Lençóis Maranhenses region in northeastern Brazil showed inadequate OSL sensitivity correction, hampering the implementation of the SAR protocol and their ability to behave as a natural dosimeter. While the shallow marine and eolian samples showed a narrow and reliable dose distribution, the fluvial sample had a wide dose distribution, suggesting incomplete bleaching and natural doses estimates dependent on age models

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV
    • …
    corecore