103 research outputs found

    Levy--Brownian motion on finite intervals: Mean first passage time analysis

    Full text link
    We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by L\'evy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index α\alpha approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.Comment: 9 pages, 13 figure

    Heat and work distributions for mixed Gauss-Cauchy process

    Full text link
    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two independent Levy white noises with stability indices α=2\alpha=2 and α=1\alpha=1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations to either bath or external force acting on the system

    Transport in a Levy ratchet: Group velocity and distribution spread

    Full text link
    We consider the motion of an overdamped particle in a periodic potential lacking spatial symmetry under the influence of symmetric L\'evy noise, being a minimal setup for a ``L\'evy ratchet.'' Due to the non-thermal character of the L\'evy noise, the particle exhibits a motion with a preferred direction even in the absence of whatever additional time-dependent forces. The examination of the L\'evy ratchet has to be based on the characteristics of directionality which are different from typically used measures like mean current and the dispersion of particles' positions, since these get inappropriate when the moments of the noise diverge. To overcome this problem, we discuss robust measures of directionality of transport like the position of the median of the particles displacements' distribution characterizing the group velocity, and the interquantile distance giving the measure of the distributions' width. Moreover, we analyze the behavior of splitting probabilities for leaving an interval of a given length unveiling qualitative differences between the noises with L\'evy indices below and above unity. Finally, we inspect the problem of the first escape from an interval of given length revealing independence of exit times on the structure of the potential.Comment: 9 pages, 12 figure

    Seeking for a fingerprint: analysis of point processes in actigraphy recording

    Get PDF
    Motor activity of humans displays complex temporal fluctuations which can be characterized by scale-invariant statistics, thus documenting that structure and fluctuations of such kinetics remain similar over a broad range of time scales. Former studies on humans regularly deprived of sleep or suffering from sleep disorders predicted change in the invariant scale parameters with respect to those representative for healthy subjects. In this study we investigate the signal patterns from actigraphy recordings by means of characteristic measures of fractional point processes. We analyse spontaneous locomotor activity of healthy individuals recorded during a week of regular sleep and a week of chronic partial sleep deprivation. Behavioural symptoms of lack of sleep can be evaluated by analysing statistics of duration times during active and resting states, and alteration of behavioural organization can be assessed by analysis of power laws detected in the event count distribution, distribution of waiting times between consecutive movements and detrended fluctuation analysis of recorded time series. We claim that among different measures characterizing complexity of the actigraphy recordings and their variations implied by chronic sleep distress, the exponents characterizing slopes of survival functions in resting states are the most effective biomarkers distinguishing between healthy and sleep-deprived groups.Comment: Communicated at UPON2015, 14-17 July 2015, Barcelona. 21 pages, 11 figures; updated: figures 4-7, text revised, expanded Sec. 1,3,

    Anomalous diffusion and generalized Sparre-Andersen scaling

    Full text link
    We are discussing long-time, scaling limit for the anomalous diffusion composed of the subordinated L\'evy-Wiener process. The limiting anomalous diffusion is in general non-Markov, even in the regime, where ensemble averages of a mean-square displacement or quantiles representing the group spread of the distribution follow the scaling characteristic for an ordinary stochastic diffusion. To discriminate between truly memory-less process and the non-Markov one, we are analyzing deviation of the survival probability from the (standard) Sparre-Andersen scaling.Comment: 5 pages, 3 figure

    Stationary states in Langevin dynamics under asymmetric L\'evy noises

    Full text link
    Properties of systems driven by white non-Gaussian noises can be very different from these systems driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by α\alpha-stable L\'evy type noises, which provide natural extension to the Gaussian noise having however a new property mainly a possibility of being asymmetric. Stationary probability densities are examined for a particle moving in parabolic, quartic and in generic double well potential models subjected to the action of α\alpha-stable noises. Relevant solutions are constructed by methods of stochastic dynamics. In situations where analytical results are known they are compared with numerical results. Furthermore, the problem of estimation of the parameters of stationary densities is investigated.Comment: 9 pages, 9 figures, 3 table

    Modelling radiation-induced cell cycle delays

    Full text link
    Ionizing radiation is known to delay the cell cycle progression. In particular after particle exposure significant delays have been observed and it has been shown that the extent of delay affects the expression of damage such as chromosome aberrations. Thus, to predict how cells respond to ionizing radiation and to derive reliable estimates of radiation risks, information about radiation-induced cell cycle perturbations is required. In the present study we describe and apply a method for retrieval of information about the time-course of all cell cycle phases from experimental data on the mitotic index only. We study the progression of mammalian cells through the cell cycle after exposure. The analysis reveals a prolonged block of damaged cells in the G2 phase. Furthermore, by performing an error analysis on simulated data valuable information for the design of experimental studies has been obtained. The analysis showed that the number of cells analyzed in an experimental sample should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and Environmental Biophysic

    Levy stable noise induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    Full text link
    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the abovementioned properties of "Gaussianity" and "whiteness" of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian L\'evy walks, so called L\'evy flights correspond to the class of Markov processes which still can be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. L\'evy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed to understand features of stochastic dynamics under the influence of L\'evy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by non-Gaussian, heavy-tailed fluctuations with infinite variance.Comment: 7 pages, 8 figure
    corecore