73 research outputs found

    Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon

    Get PDF
    Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. ^(124,126)Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to “anomalous adsorption” of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across ^(128–136)Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly ^(136)Xe and marginally ^(134)Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial contaminant that is mostly released at high temperature and an additional signature. Solar Wind (SW) Xe contents, estimated from SW-Ne and SW-Ar concentrations and SW-Ne/Ar/Xe elemental ratios, do not support SW as the additional contribution. Using a χ^2 test, the latter is best accounted for by cometary Xe as measured in the coma of Comet 67P/Churyumov-Gerasimenko (Marty et al., 2017) or by the primordial U-Xe composition inferred to be the precursor of atmospheric Xe (Pepin, 1994; Avice et al., 2017). It could have been contributed to the lunar budget by volatile-rich bodies that participated to the building of the terrestrial atmosphere inventory (Marty et al., 2017)

    Photochemical activity of Titan’s low-altitude condensed haze

    Get PDF
    Titan, the largest moon of Saturn and similar to Earth in many aspects, has unique orange-yellow colour that comes from its atmospheric haze, whose formation and dynamics are far from well understood. Present models assume that Titan’s tholin-like haze formation occurs high in atmosphere through gas-phase chemical reactions initiated by high-energy solar radiation. Here we address an important question: Is the lower atmosphere of Titan photochemically active or inert? We demonstrate that indeed tholin-like haze formation could occur on condensed aerosols throughout the atmospheric column of Titan. Detected in Titan’s atmosphere, dicyanoacetylene (C_4N_2) is used in our laboratory simulations as a model system for other larger unsaturated condensing compounds. We show that C_4N_2 ices undergo condensed-phase photopolymerization (tholin formation) at wavelengths as long as 355 nm pertinent to solar radiation reaching a large portion of Titan’s atmosphere, almost close to the surface

    Volatiles in the H2_2O and CO2_2 ices of comet 67P/Churyumov-Gerasimenko

    Full text link
    ESA's Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko (67P) was the first mission that accompanied a comet over a substantial fraction of its orbit. On board was the ROSINA mass spectrometer suite to measure the local densities of the volatile species sublimating from the ices inside the comet's nucleus. Understanding the nature of these ices was a key goal of Rosetta. We analyzed the primary cometary molecules at 67P, namely H2_2O and CO2_2, together with a suite of minor species for almost the entire mission. Our investigation reveals that the local abundances of highly volatile species, such as CH4_4 and CO, are reproduced by a linear combination of both H2_2O and CO2_2 densities. These findings bear similarities to laboratory-based temperature programmed desorption experiments of amorphous ices and imply that highly volatile species are trapped in H2_2O and CO2_2 ices. Our results do not show the presence of ices dominated by these highly volatile molecules. Most likely, they were lost due to thermal processing of 67P's interior prior to its deflection to the inner solar system. Deviations in the proportions co-released with H2_2O and CO2_2 can only be observed before the inbound equinox, when the comet was still far from the sun and the abundance of highly volatile molecules associated with CO2_2 outgassing were lower. The corresponding CO2_2 is likely seasonal frost, which sublimated and lost its trapped highly volatile species before re-freezing during the previous apparition. CO, on the other hand, was elevated during the same time and requires further investigation.Comment: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://doi.org/10.1093/mnras/stad300

    Volatiles in the H2O and CO2 ices of comet 67P/Churyumov–Gerasimenko

    Get PDF
    European Space Agency’s Rosetta spacecraft at comet 67P/Churyumov–Gerasimenko (67P) was the first mission that accompanied a comet over a substantial fraction of its orbit. On board was the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer suite to measure the local densities of the volatile species sublimating from the ices inside the comet’s nucleus. Understanding the nature of these ices was a key goal of Rosetta. We analysed the primary cometary molecules at 67P, namely H2O and CO2, together with a suite of minor species for almost the entire mission. Our investigation reveals that the local abundances of highly volatile species, such as CH4 and CO, are reproduced by a linear combination of both H2O and CO2 densities. These findings bear similarities to laboratory-based temperature-programmed desorption experiments of amorphous ices and imply that highly volatile species are trapped in H2O and CO2 ices. Our results do not show the presence of ices dominated by these highly volatile molecules. Most likely, they were lost due to thermal processing of 67P’s interior prior to its deflection to the inner solar system. Deviations in the proportions co-released with H2O and CO2 can only be observed before the inbound equinox, when the comet was still far from the sun and the abundance of highly volatile molecules associated with CO2 outgassing were lower. The corresponding CO2 is likely seasonal frost, which sublimated and lost its trapped highly volatile species before re-freezing during the previous apparition. CO, on the other hand, was elevated during the same time and requires further investigation

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Investigating Europa’s habitability with the Europa Clipper

    Get PDF
    The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface–ice–ocean exchange; (2) characterize Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa’s geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission’s science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa’s habitability, is a complex task and is guided by the mission’s Habitability Assessment Board (HAB)

    Evolution of the earth – moon system

    Get PDF
    corecore