22 research outputs found

    Plant communities, synusiae and the arithmetic of a sustainable classification

    Get PDF
    We propose an equation to evaluate the efficiency of a classification as a function of the effort required and the population size of data collectors. The formula postulates a “classification efficiency coefficient”, which relates not only to the complexity of the object to be classified, but also to the data availability and representativeness. When applied to the classification of phytocoenoses, the equation suggests that a classification system based on vascular plants offers the best compromise between sampling effort, resolution power and data availability. We discuss the possibility of basing a vegetation classification on plot records for all macroscopic photoautotrophic organisms co-occurring in the vertical projection of a given ground area, as recently suggested by some authors. We argue that the inclusion of cryptogams in the description of phytocoenoses dominated by vascular plants should rely on a synusial approach, conceived as complementary to the traditional Braun-Blanquet approach

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF

    Plant communities, synusiae and the arithmetic of a sustainable classification

    No full text
    We propose an equation to evaluate the efficiency of a classification as a function of the effort required and the population size of data collectors. The formula postulates a “classification efficiency coefficient”, which relates not only to the complexity of the object to be classified, but also to the data availability and representativeness. When applied to the classification of phytocoenoses, the equation suggests that a classification system based on vascular plants offers the best compromise between sampling effort, resolution power and data availability. We discuss the possibility of basing a vegetation classification on plot records for all macroscopic photoautotrophic organisms co-occurring in the vertical projection of a given ground area, as recently suggested by some authors. We argue that the inclusion of cryptogams in the description of phytocoenoses dominated by vascular plants should rely on a synusial approach, conceived as complementary to the traditional Braun-Blanquet approach. Syntaxonomic reference: Mucina et al (2016)

    Resetting of a planar superconducting quantum memory

    No full text
    We consider and analyze a scheme for the reset of a M × N planar array of inductively coupled Josephson flux qubits. We prove that it is possible to minimize the resetting time of an arbitrary chosen row of qubits by properly switching on and off the coupling between pairs of qubits belonging to the same column. In addition, the analysis of the time evolution of the array allows us to single out the class of generalized W states which can be successfully reset

    Selective reset of a chain of interacting superconducting qubits

    No full text
    We propose and analyze a scheme for the selective reset of a chain of inductively coupled Josephson flux qubits initially prepared in a multipartite entangled state. The possibility of controlling at will the coupling between two prefixed qubits is exploited to drive a "generalized W state" to a factorized state with only one qubit in the excited state and all the other qubits in their own ground states

    Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita)

    No full text
    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods.Fil: Czerner, Marina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Preservación y Calidad de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Agustinelli, Silvina Paola. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Preservación y Calidad de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guccione, Silvana. OmegaSur; ArgentinaFil: Yeannes, Maria Isabel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Preservación y Calidad de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    CONTROLLING THE QUANTUM DYNAMICS OF MULTIPARTITE JOSEPHSON CIRCUITS

    No full text
    CONTROLLING THE QUANTUM DYNAMICS OF MULTIPARTITE JOSEPHSON CIRCUIT

    Diffusion and transfer of entanglement in an array of inductively coupled flux qubits

    No full text
    A theoretical scheme to generate multipartite entangled states in a Josephson planar-designed architecture is reported. This scheme improves the one published by Migliore [Phys. Rev. B 74, 104503 (2006)] since it speeds up the generation of W entangled states in an MxN array of inductively coupled Josephson flux qubits by reducing the number of necessary steps. In addition, the same protocol is shown to be able to transfer the W state from one row to the other

    Nonclassical correlations in superconducting circuits

    No full text
    A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effect of their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted
    corecore