1,551 research outputs found
Reaction Rates and Nuclear Properties Relevant for Nucleosynthesis in Massive Stars and Far From Stability
Explosive nuclear burning in astrophysical environments produces unstable
nuclei which again can be targets for subsequent reactions. In addition, it
involves a large number of stable nuclides which are not fully explored by
experiments, yet. Thus, it is necessary to be able to predict reaction cross
sections and thermonuclear rates with the aid of theoretical models. Such
predictions are also of interest for investigations at radioactive ion beam
facilities. An extended library of theoretical cross sections and reaction
rates is presented. The problem of alpha+nucleus potentials is addressed and
new parametrizations presented. The problem of properly predicting cross
sections at low level densities is illustrated by the 62Ni(n,gamma) reaction.Comment: 7 pages, invited talk, to appear in proceedings of CGS11 (Prague),
World Scientific (new version: fixed typo in potential parameters; note: they
will still be incorrect in the printed version
Direct neutron capture cross sections of 62Ni in the s-process energy range
Direct neutron capture on 62Ni is calculated in the DWBA and the cross
sections in the energy range relevant for s-process nucleosynthesis are given.
It is confirmed that the thermal value of the capture cross section contains a
subthreshold resonance contribution. Contrary to previous investigations it is
found that the capture at higher energies is dominated by p-waves, thus leading
to a considerably increased cross section at s-process energies and a modified
energy dependence.Comment: 10 pages, 1 figure, corrected typos in Eq. 6 and subsequent paragrap
Non-Statistical Effects in Neutron Capture
There have been many reports of non-statistical effects in neutron-capture
measurements. However, reports of deviations of reduced-neutron-width
distributions from the expected Porter-Thomas (PT) shape largely have been
ignored. Most of these deviations have been reported for odd-A nuclides.
Because reliable spin (J) assignments have been absent for most resonances for
such nuclides, it is possible that reported deviations from PT might be due to
incorrect J assignments. We recently developed a new method for measuring spins
of neutron resonances by using the DANCE detector at LANSCE. Measurements made
with a 147Sm sample allowed us to determine spins of almost all known
resonances below 1 keV. Furthermore, analysis of these data revealed that the
reduced-neutron-width distribution was in good agreement with PT for resonances
below 350 eV, but in disagreement with PT for resonances between 350 and 700
eV. Our previous (n,alpha) measurements had revealed that the alpha strength
function also changes abruptly at this energy. There currently is no known
explanation for these two non-statistical effects. Recently, we have developed
another new method for determining the spins of neutron resonances. To
implement this technique required a small change (to record pulse-height
information for coincidence events) to a much simpler apparatus: A pair of C6D6
gamma-ray detectors which we have employed for many years to measure
neutron-capture cross sections at ORELA. Measurements with a 95Mo sample
revealed that not only does the method work very well for determining spins,
but it also makes possible parity assignments. Taken together, these new
techniques at LANSCE and ORELA could be very useful for further elucidation of
non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1
- …