2,356 research outputs found

    Asian Crises: Theory, Evidence, Warning-Signals

    Get PDF
    In July 1997, the economies of East Asia became embroiled in one of the worst financial crises of the postwar period. Yet, prior to the crisis, these economies were seen as models of economic growth experiencing sustained growth rates that exceeded those earlier thought unattainable. Why did the market not anticipate the crises? To this end, we review the Asian financial crisis from two related perspectives - whether the crisis was precipitated by a failure of the real exchange rate to be aligned with its fundamental determinants and/or whether the crisis was precipitated by a divergence of the foreign debt from its optimal path. The first perspective is based on a coherent theory of the equilibrium real exchange rate - the NATREX model - that shows how “misalignments” lead to currency crises. The second perspective is based on a model of optimal foreign debt ratio - derived from stochastic optimal control - which shows why “divergences” lead to debt crises. The important point here is that these models suggest important variables which may serve as warning signals to predict crises.Asian crises, optimal debt, equilibrium exchange rates, NATREX, stochastic optimal control, warning signals of crises, exchange rate misalignment

    MicroRNAs and the functional β cell mass: For better or worse.

    Get PDF
    Insulin secretion from pancreatic β cells plays a central role in the control of blood glucose levels. The amount of insulin released by β cells is precisely adjusted to match organism requirements. A number of conditions that arise during life, including pregnancy and obesity, can result in a decreased sensitivity of insulin target tissues and a consequent rise in insulin needs. To preserve glucose homoeostasis, the augmented insulin demand requires a compensatory expansion of the pancreatic β cell mass and an increase in its secretory activity. This compensatory process is accompanied by modifications in β cell gene expression, although the molecular mechanisms underlying the phenomenon are still poorly understood. Emerging evidence indicates that at least part of these compensatory events may be orchestrated by changes in the level of a novel class of gene regulators, the microRNAs. Indeed, several of these small, non-coding RNAs have either positive or negative impacts on β cell proliferation and survival. The studies reviewed here suggest that the balance between the actions of these two groups of microRNAs, which have opposing functional effects, can determine whether β cells expand sufficiently to maintain blood glucose levels in the normal range or fail to meet insulin demand and thus lead, as a consequence, towards diabetes manifestation. A better understanding of the mechanisms governing changes in the microRNA profile will open the way for the development of new strategies to prevent and/or treat both type 2 and gestational diabetes

    Role of islet microRNAs in diabetes: which model for which question?

    Get PDF
    MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can lead to cellular dysfunction that favours the appearance of several diseases. A specific set of microRNAs plays a crucial role in pancreatic beta cell differentiation and is essential for the fine-tuning of insulin secretion and for compensatory beta cell mass expansion in response to insulin resistance. Recently, several independent studies reported alterations in microRNA levels in the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, many of the changes in microRNA expression observed in animal models of diabetes were not detected in the islets of diabetic patients and vice versa. These findings are unlikely to merely reflect species differences because microRNAs are highly conserved in mammals. These puzzling results are most probably explained by fundamental differences in the experimental approaches which selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs predisposing individuals to the disease or the microRNAs displaying expression changes subsequent to the development of diabetes. In this review we will highlight the suitability of the different models for addressing each of these questions and propose future strategies that should allow us to obtain a better understanding of the contribution of microRNAs to the development of diabetes mellitus in humans

    Asian Crises: Theory, Evidence, Warning-Signals

    Full text link
    In July 1997, the economies of East Asia became embroiled in one of the worst financial crises of the postwar period. Yet, prior to the crisis, these economies were seen as models of economic growth experiencing sustained growth rates that exceeded those earlier thought unattainable. Why did the market not anticipate the crises? To this end, we review the Asian financial crisis from two related perspectives - whether the crisis was precipitated by a failure of the real exchange rate to be aligned with its fundamental determinants and/or whether the crisis was precipitated by a divergence of the foreign debt from its optimal path. The first perspective is based on a coherent theory of the equilibrium real exchange rate - the NATREX model - that shows how misalignments lead to currency crises. The second perspective is based on a model of optimal foreign debt ratio - derived from stochastic optimal control - which shows why divergences lead to debt crises. The important point here is that these models suggest important variables which may serve as warning signals to predict crises

    Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.AIMS/HYPOTHESIS: Ageing can lead to reduced insulin sensitivity and loss of pancreatic beta cell function, predisposing individuals to the development of diabetes. The aim of this study was to assess the contribution of microRNAs (miRNAs) to age-associated beta cell dysfunction. METHODS: The global mRNA and miRNA profiles of 3- and 12-month-old rat islets were collected by microarray. The functional impact of age-associated differences in miRNA expression was investigated by mimicking the observed changes in primary beta cells from young animals. RESULTS: Beta cells from 12-month-old rats retained normal insulin content and secretion, but failed to proliferate in response to mitotic stimuli. The islets of these animals displayed modifications at the level of several miRNAs, including upregulation of miR-34a, miR-124a and miR-383, and downregulation of miR-130b and miR-181a. Computational analysis of the transcriptomic modifications observed in the islets of 12-month-old rats revealed that the differentially expressed genes were enriched for miR-34a and miR-181a targets. Indeed, the induction of miR-34a and reduction of miR-181a in the islets of young animals mimicked the impaired beta cell proliferation observed in old animals. mRNA coding for alpha-type platelet-derived growth factor receptor, which is critical for compensatory beta cell mass expansion, is directly inhibited by miR34a and is likely to be at least partly responsible for the effects of this miRNA. CONCLUSIONS/INTERPRETATION: Changes in the level of specific miRNAs that occur during ageing affect the proliferative capacity of beta cells. This might reduce their ability to expand under conditions of increased insulin demand, favouring the development of type 2 diabetes.Swiss National Science FoundationFondation Francophone pour la Recherche sur le DiabèteWellcome Trust Senior Investigator AwardMRC Programme GrantRoyal Society Wolfson Research Merit AwardWellcome Trust project gran

    Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells.

    Get PDF
    BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells

    Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning.

    Get PDF
    Glucose-induced insulin secretion is an essential function of pancreatic β-cells that is partially lost in individuals affected by Type 2 diabetes. This unique property of β-cells is acquired through a poorly understood postnatal maturation process involving major modifications in gene expression programs. Here we show that β-cell maturation is associated with changes in microRNA expression induced by the nutritional transition that occurs at weaning. When mimicked in newborn islet cells, modifications in the level of specific microRNAs result in a switch in the expression of metabolic enzymes and cause the acquisition of glucose-induced insulin release. Our data suggest microRNAs have a central role in postnatal β-cell maturation and in the determination of adult functional β-cell mass. A better understanding of the events governing β-cell maturation may help understand why some individuals are predisposed to developing diabetes and could lead to new strategies for the treatment of this common metabolic disease
    corecore